Advertisements
Advertisements
Question
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
Solution
Let AB be the given line and OL = p be the perpendicular drawn from the origin on the line.
Here,
\[\alpha = {30}^\circ\]
So, the equation of the line AB is
\[xcos\alpha + ysin\alpha = p \]
\[ \Rightarrow x\cos {30}^\circ + y\sin {30}^\circ = p\]
\[ \Rightarrow \frac{\sqrt{3}x}{2} + \frac{y}{2} = p\]
\[ \Rightarrow \sqrt{3}x + y = 2p . . . (1)\]
Now, in triangles OLA and OLB
\[\cos {30}^\circ = \frac{OL}{OA}\text { and } \cos {60}^\circ = \frac{OL}{OB}\]
\[ \Rightarrow \frac{\sqrt{3}}{2} = \frac{p}{OA} \text { and }\frac{1}{2} = \frac{p}{OB}\]
\[ \Rightarrow OA = \frac{2p}{\sqrt{3}} \text { and} OB = 2p\]
It is given that the area of triangle OAB is \[50/\sqrt{3}\]
\[\therefore \frac{1}{2} \times OA \times OB = \frac{50}{\sqrt{3}}\]
\[ \Rightarrow \frac{1}{2} \times \frac{2p}{\sqrt{3}} \times 2p = \frac{50}{\sqrt{3}}\]
\[ \Rightarrow p^2 = 25\]
\[ \Rightarrow p = 5\]
Substituting the value of p in (1):
\[\sqrt{3}x + y = 10\]
Hence, the equation of the line AB is
\[x + \sqrt{3}y = 10\].
APPEARS IN
RELATED QUESTIONS
Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.
The line through the points (h, 3) and (4, 1) intersects the line 7x – 9y – 19 = 0. at right angle. Find the value of h.
If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.
Find the equation of a line that has y-intercept −4 and is parallel to the line joining (2, −5) and (1, 2).
Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
A (6, 3), B (−3, 5), C (4, −2) and D (x, 3x) are four points. If ∆ DBC : ∆ ABC = 1 : 2, then x is equal to
The figure formed by the lines ax ± by ± c = 0 is
Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
6x + 3y – 5 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
x − y = 4