English

If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2. - Mathematics

Advertisements
Advertisements

Question

If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.

Sum

Solution

The equations of given lines are

x cos θ – y sinθ = k cos 2θ    … (1)

x secθ + y cosec θ = k     … (2)

The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by d `|Ax_1 + By_1 + C|/sqrt(A^2 + B^2)`

On comparing equation (1) to the general equation of line i.e., Ax + By + C = 0, we obtain A = cosθ, B = -sinθ, and C = -k cos 2θ.

It is given that p is the length of the perpendicular from (0, 0) to line (1).

`∴ |A (0) + B (0) + C|/sqrt(A^2 + B^2) = |C|/sqrt(A^2 + B^2) = |-k cos 2θ|/sqrt(cos^2θ + sin^2θ) = |-6 cos 2θ|`     .....(3)

On comparing equation (2) to the general equation of line i.e., Ax + By + C = 0, we obtain A = cosθ, B = cosecθ, and C= -k

It is given that q is the length of the perpendicular from (0, 0) to line (2).

∴ `|A(0) + B(0) + C|/sqrt(A^2 + B^2) = |C|/sqrt(A^2 + B^2) = |-k|/sqrt(sec^2 θ + cosec^2θ)`        ......(4)

From (3) and (4), we have

`p^2 + 4q^2 = (|-k cos 2θ|)^2 + 4 (|-k|/sqrt(sec^θ + cosec^2θ))^2`

= `k^2 cos^2 2θ + (4k^2)/(sec^2θ + cosec^2θ)`

= `k^2 cos^2 2θ + (4k^2)/(1/(cos^2θ) + 1/(sin^2 + θ)`

= `k^2 cos^2 2θ + (4k^2)/((sin^2θ + cos^2θ)/(sin^2θ cos^2θ))`

= `k^2 cos^2 2θ  (4k^2)/((1/(sin^2θ cos^2θ)))`

= k2 cos2 2θ + 4k2 sin2θ cos2θ

= k2 cos2 2θ + k2 (2sinθ cosθ)2

= k2 cos2 2θ + k2 sin2

= k2 (cos2 2θ + sin2 2θ)

= k2

Here, we proved that p2 + 4q2 + k2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.3 [Page 228]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.3 | Q 16 | Page 228

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line which makes an angle of tan−1 (3) with the x-axis and cuts off an intercept of 4 units on negative direction of y-axis.


Find the equation of the line which intercepts a length 2 on the positive direction of the x-axis and is inclined at an angle of 135° with the positive direction of y-axis.


For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes. 


Find the equation of a line for  p = 5, α = 60°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the coordinates of the vertices of a triangle, the equations of whose sides are

y (t1 + t2) = 2x + 2a t1t2, y (t2 + t3) = 2x + 2a t2t3 and, y (t3 + t1) = 2x + 2a t1t3.


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.


Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .


Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1


If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in


Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is


Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.

6x + 3y – 5 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

 3x + 2y – 12 = 0


Reduce the following equation into intercept form and find their intercepts on the axes.

4x – 3y = 6


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×