Advertisements
Advertisements
Question
Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.
Solution
The given equation is \[\frac{x}{a} + \frac{y}{b} = 1\]
\[bx + ay = ab\]
\[ \Rightarrow ay = - bx + ab\]
\[ \Rightarrow y = - \frac{b}{a}x + b\]
This is the slope intercept form of the given line.
∴ Slope = \[- \frac{b}{a}\] and y-intercept = b
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.
Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x − 3y + 6 = 0 on the axes.
Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.
Find the equation of a line for p = 4, α = 150°.
Find the equation of a line for p = 8, α = 300°.
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Reduce the following equation to the normal form and find p and α in y − 2 = 0.
Find the point of intersection of the following pairs of lines:
bx + ay = ab and ax + by = ab.
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.
Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.
If the image of the point (2, 1) with respect to the line mirror be (5, 2), find the equation of the mirror.
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
The figure formed by the lines ax ± by ± c = 0 is
If the lines x + q = 0, y − 2 = 0 and 3x + 2y + 5 = 0 are concurrent, then the value of q will be
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
If the coordinates of the middle point of the portion of a line intercepted between the coordinate axes is (3, 2), then the equation of the line will be ______.
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into intercept form and find their intercepts on the axes.
3x + 2y – 12 = 0
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0