English

Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0. - Mathematics

Advertisements
Advertisements

Question

Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.

Sum

Solution

The equations of the given lines are

9x + 6y – 7 = 0    …(1)

3x + 2y + 6 = 0   …(2)

Let P (h, k) be the arbitrary point that is equidistant from lines (1) and (2). The perpendicular distance of P (h, k) from line (1) is given by

`d_1 = |9h + 6k - 7|/((9)^2 + (6)^2) = |9h + 6k - 7|/sqrt117 = |9h + 6k - 7|/(3sqrt13)`

The perpendicular distance of P (h, k) from line (2) is given by

`d_1 = |3h + 2k + 6|/((3)^2 + (2)^2) d_1 = |3h + 2k + 6|/sqrt13`

Since P (h, k) is equidistant from lines (1) and (2), d1 = d2

= `|9h + 6k - 7|/(3sqrt13) =  |3h + 2k + 6|/sqrt13`

= |9h + 6k - 7| = 3|3h + 2k + 6|

= |9h + 6k - 7| = ±3|3h + 2k + 6|

= 9h + 6k - 7 = 3(3h + 2k + 6) or 9h + 6k - 7 = -3 (3h + 2k + 6)

The case 9h + 6k - 7 = 3 (3h + 2k + 6) is not possible as

9h + 6k - 7 3(3h + 2k + 6) = -7 = 18 (which is absurd)

∴ 9h + 6k - 7= -3(3h + 2k + 6)

9h + 6k - 7 = - 9h - 6k - 18

= 18h + 12k + 11 = 0

Thus, the required equation of the line is 18x + 12y + 11 = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Miscellaneous Exercise [Page 234]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Miscellaneous Exercise | Q 21 | Page 234

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


If p and q are the lengths of perpendiculars from the origin to the lines x cos θ – y sin θ = k cos 2θ and xsec θ+ y cosec θ = k, respectively, prove that p2 + 4q2 = k2.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


If p is the length of perpendicular from the origin to the line whose intercepts on the axes are a and b, then show that `1/p^2 = 1/a^2 + 1/b^2`.


Find the equations of the lines, which cut-off intercepts on the axes whose sum and product are 1 and –6, respectively.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of the right bisector of the line segment joining the points A (1, 0) and B (2, 3).


Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Reduce the following equation to the normal form and find p and α in y − 2 = 0.


Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.


Find the point of intersection of the following pairs of lines:

2x − y + 3 = 0 and x + y − 5 = 0


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.


Prove that the lines  \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.


Find the equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y − 1 = 0 and 7x − 3y − 35 = 0.


Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]


Find the orthocentre of the triangle the equations of whose sides are x + y = 1, 2x + 3y = 6 and 4x − y + 4 = 0.


Prove that the following sets of three lines are concurrent:

3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


Find the conditions that the straight lines y = m1 x + c1, y = m2 x + c2 and y = m3 x + c3 may meet in a point.


Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.


Find the equation of a line which is perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and which cuts off an intercept of 4 units with the negative direction of y-axis.


Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.


The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.


Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .


If the lines ax + 12y + 1 = 0, bx + 13y + 1 = 0 and cx + 14y + 1 = 0 are concurrent, then a, b, c are in


The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is


Find the equation of a line which passes through the point (2, 3) and makes an angle of 30° with the positive direction of x-axis.


Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.


Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.


If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×