Advertisements
Advertisements
Question
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Solution
\[\sqrt{3}\] x + y + 2 = 0
\[\Rightarrow - \sqrt{3}x - y = 2\]
\[ \Rightarrow \frac{- \sqrt{3}x}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} - \frac{y}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} = \frac{2}{\sqrt{\left( - \sqrt{3} \right)^2 + \left( - 1 \right)^2}} \left[ \text { Dividing both sides by } \sqrt{\left( \text { coefficient of } x \right)^2 + \left( \text { coefficient of }y \right)^2} \right]\]
\[ \Rightarrow \frac{- \sqrt{3}x}{2} - \frac{y}{2} = 1\]
This is the normal form of the given line.
Here, p = 1,
\[cos\alpha = - \frac{\sqrt{3}}{2}\] and \[sin\alpha = - \frac{1}{2}\]
\[\Rightarrow \alpha = {210}^\circ\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1.
Find the equation of a line for p = 5, α = 60°.
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;
Reduce the following equation to the normal form and find p and α in x − 3 = 0.
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]
Prove that the following sets of three lines are concurrent:
\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text { and } y = x .\]
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
Find the values of the parameter a so that the point (a, 2) is an interior point of the triangle formed by the lines x + y − 4 = 0, 3x − 7y − 8 = 0 and 4x − y − 31 = 0.
If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
The figure formed by the lines ax ± by ± c = 0 is
Find the equation of the line where length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
If the intercept of a line between the coordinate axes is divided by the point (–5, 4) in the ratio 1 : 2, then find the equation of the line.
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0