Advertisements
Advertisements
Question
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
y − 2 = 0
Solution
The given equation is y – 2 = 0.
It can be reduced as 0.x + 1.y = 2
On dividing both sides by`sqrt(0^2 + 1^2) = 1`, we obtain 0.x + 1.y = 2
⇒ x cos 90° + y sin 90° = 2 …..... (i)
Equation (i) is in the normal form.
On comparing equation (i) with the normal form of the equation of a line
x cos ω + y sin ω = p, we obtain ω = 90° and p = 2.
Thus, the perpendicular distance of the line from the origin is 2, while the angle between the perpendicular and the positive x-axis is 90°.
APPEARS IN
RELATED QUESTIONS
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
If three lines whose equations are y = m1x + c1, y = m2x + c2 and y = m3x + c3 are concurrent, then show that m1(c2 – c3) + m2 (c3 – c1) + m3 (c1 – c2) = 0.
Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.
Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\] with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (1, 4), (2, −3) and (−1, −2).
Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).
Find the equation of a line for p = 5, α = 60°.
Find the equation of the straight line upon which the length of the perpendicular from the origin is 2 and the slope of this perpendicular is \[\frac{5}{12}\].
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.
Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to the normal form and find p and α.
Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .
Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].
Reduce the following equation to the normal form and find p and α in \[x - y + 2\sqrt{2} = 0\].
Reduce the lines 3 x − 4 y + 4 = 0 and 2 x + 4 y − 5 = 0 to the normal form and hence find which line is nearer to the origin.
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the area of the triangle formed by the line x + y − 6 = 0, x − 3y − 2 = 0 and 5x − 3y + 2 = 0.
Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0
Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]
Find the equation of the straight line perpendicular to 2x − 3y = 5 and cutting off an intercept 1 on the positive direction of the x-axis.
Find the equation of the right bisector of the line segment joining the points (a, b) and (a1, b1).
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Find the projection of the point (1, 0) on the line joining the points (−1, 2) and (5, 4).
Find the values of α so that the point P (α2, α) lies inside or on the triangle formed by the lines x − 5y+ 6 = 0, x − 3y + 2 = 0 and x − 2y − 3 = 0.
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
The point which divides the join of (1, 2) and (3, 4) externally in the ratio 1 : 1
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.
Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.
x − y = 4