Advertisements
Advertisements
Question
Find the coordinates of the foot of the perpendicular from the point (−1, 3) to the line 3x − 4y − 16 = 0.
Solution
Let A (−1, 3) be the given point.
Also, let M (h, k) be the foot of the perpendicular drawn from A (−1, 3) to the line 3x − 4y − 16 = 0
Point M (h, k) lies on the line 3x − 4y − 16 = 0
3h − 4k − 16 = 0 ... (1)
Lines 3x − 4y − 16 = 0 and AM are perpendicular.
\[\therefore\] \[\frac{k - 3}{h + 1} \times \frac{3}{4} = - 1\]
\[\Rightarrow 4h + 3k - 5 = 0\] ... (2)
Solving eq (1) and eq (2) by cross multiplication, we get:
\[\frac{h}{20 + 48} = \frac{k}{- 64 + 15} = \frac{1}{9 + 16}\]
\[ \Rightarrow a = \frac{68}{25}, b = - \frac{49}{25}\]
Hence, the coordinates of the foot of perpendicular are \[\left( \frac{68}{25}, - \frac{49}{25} \right)\].
APPEARS IN
RELATED QUESTIONS
Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.
Find the lines through the point (0, 2) making angles \[\frac{\pi}{3} \text { and } \frac{2\pi}{3}\] with the x-axis. Also, find the lines parallel to them cutting the y-axis at a distance of 2 units below the origin.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Point R (h, k) divides a line segment between the axes in the ratio 1 : 2. Find the equation of the line.
Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of Y-axis. Find the equation of the line.
Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the following equation to the normal form and find p and α in x − 3 = 0.
Show that the origin is equidistant from the lines 4x + 3y + 10 = 0; 5x − 12y + 26 = 0 and 7x + 24y = 50.
Reduce the equation 3x − 2y + 6 = 0 to the intercept form and find the x and y intercepts.
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Find the coordinates of the incentre and centroid of the triangle whose sides have the equations 3x− 4y = 0, 12y + 5x = 0 and y − 15 = 0.
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
If the three lines ax + a2y + 1 = 0, bx + b2y + 1 = 0 and cx + c2y + 1 = 0 are concurrent, show that at least two of three constants a, b, c are equal.
Find the equation of the straight line which has y-intercept equal to \[\frac{4}{3}\] and is perpendicular to 3x − 4y + 11 = 0.
Determine whether the point (−3, 2) lies inside or outside the triangle whose sides are given by the equations x + y − 4 = 0, 3x − 7y + 8 = 0, 4x − y − 31 = 0 .
Write the coordinates of the orthocentre of the triangle formed by the lines x2 − y2 = 0 and x + 6y = 18.
Write the coordinates of the orthocentre of the triangle formed by the lines xy = 0 and x + y = 1.
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is
The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is
A point equidistant from the line 4x + 3y + 10 = 0, 5x − 12y + 26 = 0 and 7x+ 24y − 50 = 0 is
Find the equation of the lines which passes through the point (3, 4) and cuts off intercepts from the coordinate axes such that their sum is 14.
For what values of a and b the intercepts cut off on the coordinate axes by the line ax + by + 8 = 0 are equal in length but opposite in signs to those cut off by the line 2x – 3y + 6 = 0 on the axes.
A line cutting off intercept – 3 from the y-axis and the tangent at angle to the x-axis is `3/5`, its equation is ______.
If the line `x/"a" + y/"b"` = 1 passes through the points (2, –3) and (4, –5), then (a, b) is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
y = 0
Reduce the following equation into intercept form and find their intercepts on the axes.
4x – 3y = 6