English

The Centroid of a Triangle is (2, 7) and Two of Its Vertices Are (4, 8) and (−2, 6). the Third Vertex is - Mathematics

Advertisements
Advertisements

Question

The centroid of a triangle is (2, 7) and two of its vertices are (4, 8) and (−2, 6). The third vertex is

Options

  • (0, 0)

  • (4, 7)

  •  (7, 4)

  • (7, 7)

  • (4, 4)

MCQ

Solution

(4, 7)

Let A(4, 8) and B(−2, 6) be the given vertex. Let C(h, k) be the third vertex.
The centroid of \[\bigtriangleup\] ABC is \[\left( \frac{4 - 2 + h}{3}, \frac{8 + 6 + k}{3} \right)\].

It is given that the centroid of triangle ABC is (2, 7).

\[\therefore \frac{4 - 2 + h}{3} = 2, \frac{8 + 6 + k}{3} = 7\]

\[ \Rightarrow h = 4, k = 7\] 

Thus, the third vertex is (4, 7).

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 135]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 27 | Page 135

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

`x – sqrt3y + 8 = 0`


Find equation of the line parallel to the line 3x – 4y + 2 = 0 and passing through the point (–2, 3).


Find equation of the line perpendicular to the line x – 7y + 5 = 0 and having x intercept 3.


Find angles between the lines `sqrt3x + y = 1 and x + sqrt3y = 1`.


Prove that the line through the point (x1, y1) and parallel to the line Ax + By + C = 0 is A (x –x1) + B (y – y1) = 0.


The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.


In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.


Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.


In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?


Find equation of the line which is equidistant from parallel lines 9x + 6y – 7 = 0 and 3x + 2y + 6 = 0.


The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.


Find the equation of a line which is equidistant from the lines x = − 2 and x = 6.


Find the equation of a line making an angle of 150° with the x-axis and cutting off an intercept 2 from y-axis.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the equation of the side BC of the triangle ABC whose vertices are (−1, −2), (0, 1) and (2, 0) respectively. Also, find the equation of the median through (−1, −2).


Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1. 


Find the equation of a line for  p = 5, α = 60°.


Find the equation of the line on which the length of the perpendicular segment from the origin to the line is 4 and the inclination of the perpendicular segment with the positive direction of x-axis is 30°.


Find the equation of the straight line on which the length of the perpendicular from the origin is 2 and the perpendicular makes an angle α with x-axis such that sin α = \[\frac{1}{3}\].


Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.


Find the equation of a straight line on which the perpendicular from the origin makes an angle of 30° with x-axis and which forms a triangle of area \[50/\sqrt{3}\] with the axes.


Reduce the equation \[\sqrt{3}\] x + y + 2 = 0 to slope-intercept form and find slope and y-intercept;


Reduce the equation\[\sqrt{3}\] x + y + 2 = 0 to intercept form and find intercept on the axes.


Reduce the following equation to the normal form and find p and α in \[x + \sqrt{3}y - 4 = 0\] .


Reduce the following equation to the normal form and find p and α in \[x + y + \sqrt{2} = 0\].


Put the equation \[\frac{x}{a} + \frac{y}{b} = 1\] to the slope intercept form and find its slope and y-intercept.


Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].


Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.


Find the equations of the medians of a triangle, the equations of whose sides are:
3x + 2y + 6 = 0, 2x − 5y + 4 = 0 and x − 3y − 6 = 0


Prove that the following sets of three lines are concurrent:

\[\frac{x}{a} + \frac{y}{b} = 1, \frac{x}{b} + \frac{y}{a} = 1\text {  and } y = x .\]


If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.


If a, b, c are in A.P., prove that the straight lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent.


If a ≠ b ≠ c, write the condition for which the equations (b − c) x + (c − a) y + (a − b) = 0 and (b3 − c3) x + (c3 − a3) y + (a3 − b3) = 0 represent the same line.


The inclination of the line x – y + 3 = 0 with the positive direction of x-axis is ______.


Locus of the mid-points of the portion of the line x sin θ + y cos θ = p intercepted between the axes is ______.


Reduce the following equation into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.

x − y = 4


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×