Advertisements
Advertisements
Question
The hypotenuse of a right angled triangle has its ends at the points (1, 3) and (−4, 1). Find the equation of the legs (perpendicular sides) of the triangle that are parallel to the axes.
Solution
Let triangle ABC be a right angled triangle whose hypotenuse is AB. The coordinates of A and B are (1, 3) and (−4, 1) respectively.
Let the slope of BC be m.
AC ⊥ BC
∴ Slope of AC = `-1/"m"`
Equation of line BC,
y – y1 = m(x – x1)
y – 1 = m(x + 4)
or mx – y + 4m + 1 = 0 .......(i)
Equation of line AC
y – 3 = `- 1/"m" ("x" - 1)`
or my – 3m = – x + 1
or x + my – 3m – 1 = 0 ........(ii)
The equation of both these lines can be found from the given value of m. If side BC is parallel to x-axis, then m = 0
Equation of BC, y – 1 = 0
or y = 1
∴ AC is parallel to y-axis and it goes through A(1, 3). Hence, the equation of AC is x = 1
Hence, the equations of BC and AC are y = 1 and x = 1.
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.
Find the equation of the line passing through the point of intersection of the lines 4x + 7y – 3 = 0 and 2x – 3y + 1 = 0 that has equal intercepts on the axes.
Show that the equation of the line passing through the origin and making an angle θ with the line `y = mx + c " is " y/c = (m+- tan theta)/(1 +- m tan theta)`.
In what ratio, the line joining (–1, 1) and (5, 7) is divided by the line x + y = 4?
A person standing at the junction (crossing) of two straight paths represented by the equations 2x – 3y+ 4 = 0 and 3x + 4y – 5 = 0 wants to reach the path whose equation is 6x – 7y + 8 = 0 in the least time. Find equation of the path that he should follow.
Find the equation of the bisector of angle A of the triangle whose vertices are A (4, 3), B (0, 0) and C(2, 3).
Find the equations of the diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y =1.
Find the equation of a line for p = 4, α = 150°.
Find the value of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Find the equation of the straight line which makes a triangle of area \[96\sqrt{3}\] with the axes and perpendicular from the origin to it makes an angle of 30° with Y-axis.
If the straight line through the point P (3, 4) makes an angle π/6 with the x-axis and meets the line 12x + 5y + 10 = 0 at Q, find the length PQ.
Reduce the following equation to the normal form and find p and α in y − 2 = 0.
Find the values of θ and p, if the equation x cos θ + y sin θ = p is the normal form of the line \[\sqrt{3}x + y + 2 = 0\].
Find the point of intersection of the following pairs of lines:
2x − y + 3 = 0 and x + y − 5 = 0
Find the point of intersection of the following pairs of lines:
\[y = m_1 x + \frac{a}{m_1} \text { and }y = m_2 x + \frac{a}{m_2} .\]
Find the coordinates of the vertices of a triangle, the equations of whose sides are x + y − 4 = 0, 2x − y + 3 = 0 and x − 3y + 2 = 0.
Find the area of the triangle formed by the line y = 0, x = 2 and x + 2y = 3.
Prove that the lines \[y = \sqrt{3}x + 1, y = 4 \text { and } y = - \sqrt{3}x + 2\] form an equilateral triangle.
Show that the area of the triangle formed by the lines y = m1 x, y = m2 x and y = c is equal to \[\frac{c^2}{4}\left( \sqrt{33} + \sqrt{11} \right),\] where m1, m2 are the roots of the equation \[x^2 + \left( \sqrt{3} + 2 \right)x + \sqrt{3} - 1 = 0 .\]
Prove that the following sets of three lines are concurrent:
3x − 5y − 11 = 0, 5x + 3y − 7 = 0 and x + 2y = 0
For what value of λ are the three lines 2x − 5y + 3 = 0, 5x − 9y + λ = 0 and x − 2y + 1 = 0 concurrent?
If the lines p1 x + q1 y = 1, p2 x + q2 y = 1 and p3 x + q3 y = 1 be concurrent, show that the points (p1, q1), (p2, q2) and (p3, q3) are collinear.
Show that the straight lines L1 = (b + c) x + ay + 1 = 0, L2 = (c + a) x + by + 1 = 0 and L3 = (a + b) x + cy + 1 = 0 are concurrent.
Find the equation of the perpendicular bisector of the line joining the points (1, 3) and (3, 1).
Find the image of the point (2, 1) with respect to the line mirror x + y − 5 = 0.
The equations of perpendicular bisectors of the sides AB and AC of a triangle ABC are x − y + 5 = 0 and x + 2y = 0 respectively. If the point A is (1, −2), find the equation of the line BC.
Write the area of the figure formed by the lines a |x| + b |y| + c = 0.
The number of real values of λ for which the lines x − 2y + 3 = 0, λx + 3y + 1 = 0 and 4x − λy + 2 = 0 are concurrent is
The equations of the sides AB, BC and CA of ∆ ABC are y − x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. The equation of the altitude through B is
Two vertices of a triangle are (−2, −1) and (3, 2) and third vertex lies on the line x + y = 5. If the area of the triangle is 4 square units, then the third vertex is
Prove that every straight line has an equation of the form Ax + By + C = 0, where A, B and C are constants.
A line passes through P(1, 2) such that its intercept between the axes is bisected at P. The equation of the line is ______.
Find the equation of the straight line which passes through the point (1, – 2) and cuts off equal intercepts from axes.
Find the equation of the line which passes through the point (– 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is ______.
The line which cuts off equal intercept from the axes and pass through the point (1, –2) is ______.
Reduce the following equation into slope-intercept form and find their slopes and the y-intercepts.
y = 0