Advertisements
Advertisements
Question
Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.
Solution
Let the slope of the required line PQ be m.
The equation of the line PQ, which passes through the point P(−1, 2) and has slope m, is
y – y1 = m(x – x1)
y – 2 = m(x + 1)
or mx – y + m + 2 = 0 ....…(i)
equation of line AB x+ y = 4
∴ y = 4 – x
Putting the value of y in equation (1),
mx – (4 – x) + m + 2 = 0
or (m + 1) x + m – 2 = 0
∴ x = `- ("m" - 2)/("m" + 1)`
Now y = 4 − x
= `4 + ("m" - 2)/("m" + 1)`
= `(4"m" + 4 + "m" - 2)/("m" + 1) = (5"m" + 2)/("m" + 1)`
Given: PQ = 3 or PQ2 = 9
∴ `(- ("m" - 2)/("m" + 1) + 1)^2 + ((5"m" + 2)/("m" + 1) - 2)^2 = 9`
or `((-"m" + 2 + "m" + 1)/("m" + 1))^2 + ((5"m" + 2 - 2"m" - 2)/("m" + 1))^2 = 9`
or `9/("m" + 1)^2 + ((3"m")/("m"+ 1))^2 = 9`
or `(9 + 9"m"^2)/("m" + 1)^2 = 9`
or 1 + m2 = (1 + m)2
∴ 1 + m2 = 1 + 2m + m2
or 2m = 0
or m = 0
Hence, the slope of line PQ is 0 i.e., the line is parallel to the x-axis.
APPEARS IN
RELATED QUESTIONS
Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
What are the points on the y-axis whose distance from the line `x/3 + y/4 = 1` is 4 units.
Find the equation of the line parallel to y-axis and drawn through the point of intersection of the lines x– 7y + 5 = 0 and 3x + y = 0.
If sum of the perpendicular distances of a variable point P (x, y) from the lines x + y – 5 = 0 and 3x – 2y+ 7 = 0 is always 10. Show that P must move on a line.
A ray of light passing through the point (1, 2) reflects on the x-axis at point A and the reflected ray passes through the point (5, 3). Find the coordinates of A.
Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.
Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.
Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.
A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to a line having slope 3/4.
Find the distance of the point (2, 5) from the line 3x + y + 4 = 0 measured parallel to the line 3x − 4y+ 8 = 0.
The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.
Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.
Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.
What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?
What are the points on y-axis whose distance from the line \[\frac{x}{3} + \frac{y}{4} = 1\] is 4 units?
Determine the distance between the pair of parallel lines:
4x − 3y − 9 = 0 and 4x − 3y − 24 = 0
Determine the distance between the pair of parallel lines:
8x + 15y − 34 = 0 and 8x + 15y + 31 = 0
Determine the distance between the pair of parallel lines:
4x + 3y − 11 = 0 and 8x + 6y = 15
Find the equation of two straight lines which are parallel to x + 7y + 2 = 0 and at unit distance from the point (1, −1).
Answer 3:
If the centroid of a triangle formed by the points (0, 0), (cos θ, sin θ) and (sin θ, − cos θ) lies on the line y = 2x, then write the value of tan θ.
Write the distance between the lines 4x + 3y − 11 = 0 and 8x + 6y − 15 = 0.
The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is
The value of λ for which the lines 3x + 4y = 5, 5x + 4y = 4 and λx + 4y = 6 meet at a point is
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is
A plane passes through (1, - 2, 1) and is perpendicular to two planes 2x - 2y + z = 0 and x - y + 2z = 4. The distance of the plane from the point (1, 2, 2) is ______.
Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.
Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.
The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.
A point moves such that its distance from the point (4, 0) is half that of its distance from the line x = 16. The locus of the point is ______.
Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.
If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.
The distance between the lines y = mx + c1 and y = mx + c2 is ______.
The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is ______.
A point moves so that square of its distance from the point (3, –2) is numerically equal to its distance from the line 5x – 12y = 3. The equation of its locus is ______.
The value of the λ, if the lines (2x + 3y + 4) + λ (6x – y + 12) = 0 are
Column C1 | Column C2 |
(a) Parallel to y-axis is | (i) λ = `-3/4` |
(b) Perpendicular to 7x + y – 4 = 0 is | (ii) λ = `-1/3` |
(c) Passes through (1, 2) is | (iii) λ = `-17/41` |
(d) Parallel to x axis is | λ = 3 |
A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:
The distance of the point (2, – 3, 1) from the line `(x + 1)/2 = (y - 3)/3 = (z + 1)/-1` is ______.