English

Find the Distance of the Point of Intersection of the Lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the Line 8x + 6y + 5 = 0. - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point of intersection of the lines 2x + 3y = 21 and 3x − 4y + 11 = 0 from the line 8x + 6y + 5 = 0.

Answer in Brief

Solution

Solving the lines 2x + 3y = 21 and 3x − 4y + 11 = 0  we get:

\[\frac{x}{33 - 84} = \frac{y}{- 63 - 22} = \frac{1}{- 8 - 9}\]

\[ \Rightarrow x = 3, y = 5\]

So, the point of intersection of 2x + 3y = 21 and 3x − 4y + 11 = 0 is (3, 5).
Now, the perpendicular distance d of the line 8x + 6y + 5 = 0 from the point (3, 5) is \[d = \left| \frac{24 + 30 + 5}{\sqrt{8^2 + 6^2}} \right| = \frac{59}{10}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.15 [Page 108]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.15 | Q 5 | Page 108

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If the lines `(x-1)/2=(y+1)/3=(z-1)/4 ` and `(x-3)/1=(y-k)/2=z/1` intersect each other then find value of k


Find the distance between parallel lines  l (x + y) + p = 0 and l (x + y) – r = 0


Find perpendicular distance from the origin to the line joining the points (cosΘ, sin Θ) and (cosΦ, sin Φ).


Find the direction in which a straight line must be drawn through the point (–1, 2) so that its point of intersection with the line x + y = 4 may be at a distance of 3 units from this point.


Find the co-ordinates of the point, which divides the line segment joining the points A(2, − 6, 8) and B(− 1, 3, − 4) externally in the ratio 1 : 3.


Prove that the line y − x + 2 = 0 divides the join of points (3, −1) and (8, 9) in the ratio 2 : 3.


Find the equation of the line whose perpendicular distance from the origin is 4 units and the angle which the normal makes with the positive direction of x-axis is 15°.


A line passes through a point A (1, 2) and makes an angle of 60° with the x-axis and intersects the line x + y = 6 at the point P. Find AP.


Find the distance of the point (2, 3) from the line 2x − 3y + 9 = 0 measured along a line making an angle of 45° with the x-axis.


The perpendicular distance of a line from the origin is 5 units and its slope is − 1. Find the equation of the line.


Find the equation of a line perpendicular to the line \[\sqrt{3}x - y + 5 = 0\] and at a distance of 3 units from the origin.


Find the distance of the point (4, 5) from the straight line 3x − 5y + 7 = 0.


What are the points on X-axis whose perpendicular distance from the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] is a ?


Find the perpendicular distance from the origin of the perpendicular from the point (1, 2) upon the straight line \[x - \sqrt{3}y + 4 = 0 .\]


Determine the distance between the pair of parallel lines:

4x − 3y − 9 = 0 and 4x − 3y − 24 = 0


Determine the distance between the pair of parallel lines:

y = mx + c and y = mx + d


The equations of two sides of a square are 5x − 12y − 65 = 0 and 5x − 12y + 26 = 0. Find the area of the square.

 


Prove that the lines 2x + 3y = 19 and 2x + 3y + 7 = 0 are equidistant from the line 2x + 3y= 6.


Find the ratio in which the line 3x + 4+ 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 


Find the equations of the lines through the point of intersection of the lines x − y + 1 = 0 and 2x − 3y+ 5 = 0, whose distance from the point(3, 2) is 7/5.


Write the value of θ ϵ \[\left( 0, \frac{\pi}{2} \right)\] for which area of the triangle formed by points O (0, 0), A (a cos θ, b sin θ) and B (a cos θ, − b sin θ) is maximum.


The area of a triangle with vertices at (−4, −1), (1, 2) and (4, −3) is


Distance between the lines 5x + 3y − 7 = 0 and 15x + 9y + 14 = 0 is


The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the line 3x + 4y + 5 = 0 and 3x + 4y − 5 = 0 is


The shortest distance between the lines

`bar"r" = (hat"i" + 2hat"j" + hat"k") + lambda (hat"i" - hat"j" + hat"k")` and

`bar"r" = (2hat"i" - hat"j" - hat"k") + mu(2hat"i" + hat"j" + 2hat"k")` is


Find the distance between the lines 3x + 4y = 9 and 6x + 8y = 15.


Show that the locus of the mid-point of the distance between the axes of the variable line x cosα + y sinα = p is `1/x^2 + 1/y^2 = 4/p^2` where p is a constant.


The distance of the point P(1, – 3) from the line 2y – 3x = 4 is ______.


Find the points on the line x + y = 4 which lie at a unit distance from the line 4x + 3y = 10.


If the sum of the distances of a moving point in a plane from the axes is 1, then find the locus of the point.


The distance of the point of intersection of the lines 2x – 3y + 5 = 0 and 3x + 4y = 0 from the line 5x – 2y = 0 is ______.


A point equidistant from the lines 4x + 3y + 10 = 0, 5x – 12y + 26 = 0 and 7x + 24y – 50 = 0 is ______.


A straight line passes through the origin O meet the parallel lines 4x + 2y = 9 and 2x + y + 6 = 0 at points P and Q respectively. Then, the point O divides the segment Q in the ratio:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×