Advertisements
Advertisements
Question
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Solution
Solving the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0 we get:
So, the point of intersection of 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0 is
The equation of the line passing through the origin and the point
APPEARS IN
RELATED QUESTIONS
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.
Find the equation of a line drawn perpendicular to the line
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line