Advertisements
Advertisements
Question
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Solution
We know that the equations of two lines passing through a point
\[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the given line y = mx + c are
\[y - y_1 = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]
Here,
Equation of the given line is,
\[6x + 5y - 8 = 0\]
\[ \Rightarrow 5y = - 6x + 8\]
\[ \Rightarrow y = - \frac{6}{5}x + \frac{8}{5}\]
\[\text { Comparing this equation with } y = mx + c\]
we get,
\[m = - \frac{6}{5}\]
\[x_1 = 2, y_1 = - 1, \alpha = {45}^\circ , m = - \frac{6}{5}\]
So, the equations of the required lines are
\[y + 1 = \frac{- \frac{6}{5} + \tan {45}^\circ}{1 + \frac{6}{5}\tan {45}^\circ}\left( x - 2 \right) \text { and }y + 1 = \frac{- \frac{6}{5} - \tan {45}^\circ}{1 - \frac{6}{5}\tan {45}^\circ}\left( x - 2 \right)\]
\[ \Rightarrow y + 1 = \frac{- \frac{6}{5} + 1}{1 + \frac{6}{5}}\left( x - 2 \right) \text { and } y + 1 = \frac{- \frac{6}{5} - 1}{1 - \frac{6}{5}}\left( x - 2 \right)\]
\[ \Rightarrow y + 1 = \frac{- 1}{11}\left( x - 2 \right) \text { and } y + 1 = \frac{- 11}{- 1}\left( x - 2 \right)\]
\[ \Rightarrow x + 11y + 9 = 0\text { and } 11x - y - 23 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.