Advertisements
Advertisements
Question
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
Solution
The given lines are
l1x + m1y + n1 = 0 ... (1)
l2x + m2y + n2 = 0 ... (2)
l1x + m1y + n1' = 0 ... (3)
l2x + m2y + n2' = 0 ... (4)
Let (1), (2), (3) and (4) represent the sides AB, BC, CD and DA, respectively.
The equation of diagonal AC passing through the intersection of (2) and (3) is given by
l1x + m1y + n1' + \[\lambda\] (l2x + m2y + n2) = 0
\[\Rightarrow \left( l_1 + \lambda l_2 \right)x + \left( m_1 + \lambda m_2 \right)y + \left( n_1 ' + \lambda n_2 \right) = 0\]
\[ \Rightarrow \text { Slope of diagonal AC } = - \left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\]
Also, the equation of diagonal BD, passing through the intersection of (1) and (2), is given by
l1x + m1y + n1 + \[\mu\] (l2x + m2y + n2) = 0
\[\Rightarrow \left( l_1 + \mu l_2 \right)x + \left( m_1 + \mu m_2 \right)y + \left( n_1 + \mu n_2 \right) = 0\]
\[ \Rightarrow \text { Slope of diagonal BD }= - \left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right)\]
The diagonals are perpendicular to each other.
∴ \[\left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right) = - 1\]
\[\Rightarrow \left( l_1 + \lambda l_2 \right)\left( l_1 + \mu l_2 \right) = - \left( m_1 + \lambda m_2 \right)\left( m_1 + \mu m_2 \right)\]
\[\text { Let }\lambda = - 1, \mu = 1\]
\[ \Rightarrow \left( l_1 - l_2 \right)\left( l_1 + l_2 \right) = - \left( m_1 - m_2 \right)\left( m_1 + m_2 \right)\]
\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) = - \left( {m_1}^2 - {m_2}^2 \right)\]
\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) + \left( {m_1}^2 - {m_2}^2 \right) = 0\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].
Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.