Advertisements
Advertisements
प्रश्न
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
उत्तर
The given lines are
l1x + m1y + n1 = 0 ... (1)
l2x + m2y + n2 = 0 ... (2)
l1x + m1y + n1' = 0 ... (3)
l2x + m2y + n2' = 0 ... (4)
Let (1), (2), (3) and (4) represent the sides AB, BC, CD and DA, respectively.
The equation of diagonal AC passing through the intersection of (2) and (3) is given by
l1x + m1y + n1' + \[\lambda\] (l2x + m2y + n2) = 0
\[\Rightarrow \left( l_1 + \lambda l_2 \right)x + \left( m_1 + \lambda m_2 \right)y + \left( n_1 ' + \lambda n_2 \right) = 0\]
\[ \Rightarrow \text { Slope of diagonal AC } = - \left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\]
Also, the equation of diagonal BD, passing through the intersection of (1) and (2), is given by
l1x + m1y + n1 + \[\mu\] (l2x + m2y + n2) = 0
\[\Rightarrow \left( l_1 + \mu l_2 \right)x + \left( m_1 + \mu m_2 \right)y + \left( n_1 + \mu n_2 \right) = 0\]
\[ \Rightarrow \text { Slope of diagonal BD }= - \left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right)\]
The diagonals are perpendicular to each other.
∴ \[\left( \frac{l_1 + \lambda l_2}{m_1 + \lambda m_2} \right)\left( \frac{l_1 + \mu l_2}{m_1 + \mu m_2} \right) = - 1\]
\[\Rightarrow \left( l_1 + \lambda l_2 \right)\left( l_1 + \mu l_2 \right) = - \left( m_1 + \lambda m_2 \right)\left( m_1 + \mu m_2 \right)\]
\[\text { Let }\lambda = - 1, \mu = 1\]
\[ \Rightarrow \left( l_1 - l_2 \right)\left( l_1 + l_2 \right) = - \left( m_1 - m_2 \right)\left( m_1 + m_2 \right)\]
\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) = - \left( {m_1}^2 - {m_2}^2 \right)\]
\[ \Rightarrow \left( {l_1}^2 - {l_2}^2 \right) + \left( {m_1}^2 - {m_2}^2 \right) = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.