मराठी

Find the Length of the Perpendicular from the Origin to the Straight Line Joining the Two Points Whose Coordinates Are (A Cos α, a Sin α) and (A Cos β, a Sin β). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).

थोडक्यात उत्तर

उत्तर

Equation of the line passing through (acosα, asinα) and (acosβ, asinβ) is

\[y - asin\alpha = \frac{asin\beta - asin\alpha}{acos\beta - acos\alpha}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = \frac{sin\beta - sin\alpha}{cos\beta - cos\alpha}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = \frac{2\cos\left( \frac{\beta + \alpha}{2} \right)\sin\left( \frac{\beta - \alpha}{2} \right)}{2\sin\left( \frac{\beta + \alpha}{2} \right)\sin\left( \frac{\alpha - \beta}{2} \right)}\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = - \cot\left( \frac{\beta + \alpha}{2} \right)\left( x - acos\alpha \right)\]

\[ \Rightarrow y - asin\alpha = - \cot\left( \frac{\alpha + \beta}{2} \right)\left( x - acos\alpha \right)\]

\[\Rightarrow x\cot\left( \frac{\alpha + \beta}{2} \right) + y - asin\alpha - acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right) = 0\]

The distance of the line from the origin is

\[d = \left| \frac{- asin\alpha - acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right)}{\sqrt{\cot^2 \left( \frac{\alpha + \beta}{2} \right) + 1}} \right|\]

\[ \Rightarrow d = \left| \frac{asin\alpha + acos\alpha \cot\left( \frac{\alpha + \beta}{2} \right)}{\sqrt{{cosec}^2 \left( \frac{\alpha + \beta}{2} \right)}} \right| \left( \because {cosec}^2 \theta = 1 + \cot^2 \theta \right)\]

\[\Rightarrow d = a\left| \sin\left( \frac{\alpha + \beta}{2} \right)sin\alpha + cos\alpha \cos\left( \frac{\alpha + \beta}{2} \right) \right| \]

\[ \Rightarrow d = a\left| sin\alpha \sin\left( \frac{\alpha + \beta}{2} \right) + cos\alpha \cos\left( \frac{\alpha + \beta}{2} \right) \right| \]

\[ \Rightarrow d = a\left| \cos\left( \frac{\alpha + \beta}{2} - \alpha \right) \right| = a\cos\left( \frac{\beta - \alpha}{2} \right) = a\cos\left( \frac{\alpha - \beta}{2} \right)\]

Hence, the required distance is \[a\cos\left( \frac{\alpha - \beta}{2} \right)\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.15 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.15 | Q 3 | पृष्ठ १०७

संबंधित प्रश्‍न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×