Advertisements
Advertisements
प्रश्न
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
उत्तर
The sides AB, BC and CA of a triangle ABC are as follows:
5x − 3y + 2 = 0 ... (1)
x − 3y − 2 = 0 ... (2)
x + y − 6 = 0 ... (3)
Solving (1) and (3):
x = 2 , y = 4
Thus, AB and CA intersect at A (2, 4).
Let AD be the altitude.
\[AD \perp BC\]
\[\therefore\] Slope of AD \[\times\] Slope of BC = −1
Here, slope of BC = slope of the line (2) = \[\frac{1}{3}\]
\[\therefore \text { Slope of AD }\times \frac{1}{3} = - 1 \]
\[ \Rightarrow \text { Slope of AD } = - 3\]
Hence, the equation of the altitude AD passing through A (2, 4) and having slope −3 is
\[y - 4 = - 3\left( x - 2 \right)\]
\[ \Rightarrow 3x + y = 10\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.
A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].
Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.