मराठी

Find the Equation to the Straight Line Which Bisects the Distance Between the Points (A, B), (A', B') and Also Bisects the Distance Between the Points (−A, B) and (A', −B'). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').

थोडक्यात उत्तर

उत्तर

Let the given points be A (a, b), B (a', b'), C (−a, b) and D (a', −b').
Let P and Q be the midpoints of AB and CD, respectively.

\[\therefore P \equiv \left( \frac{a + a^{\prime}}{2}, \frac{b + b^{\prime}}{2} \right)\]

\[Q \equiv \left( \frac{a^{\prime} - a}{2}, \frac{b - b^{\prime}}{2} \right)\]

The equation of the line passing through P and Q is

\[y - \frac{b + b^{\prime}}{2} = \frac{\frac{b - b'}{2} - \frac{b + b'}{2}}{\frac{a' - a}{2} - \frac{a' + a}{2}}\left( x - \frac{a + a^{\prime}}{2} \right)\]

\[ \Rightarrow 2y - b - b^{\prime} = \frac{b^{\prime}}{a}\left( 2x - a - a^{\prime} \right)\]

\[ \Rightarrow 2ay - 2 b^{\prime} x = ab - a^{\prime} b^{\prime}\]

Hence, the equation of the required straight line is \[2ay - 2 b^{\prime} x = ab - a^{\prime} b^{\prime}\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.5 [पृष्ठ ३५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.5 | Q 8 | पृष्ठ ३५

संबंधित प्रश्‍न

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3)  x + y` = 1 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×