Advertisements
Advertisements
प्रश्न
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
उत्तर
Let ABC be the isosceles triangle, where 7x − y + 3 = 0 and x + y − 3 = 0 represent the sides AB and AC, respectively.
Let AB = BC
\[\because\] AB = BC
\[\therefore\] tan B = tan C
Here,
Slope of AB = 7
Slope of AC = −1
Let m be the slope of BC.
\[\text { Then,} \left| \frac{m - 7}{1 + 7m} \right| = \left| \frac{m + 1}{1 - m} \right| = \left| \frac{m + 1}{m - 1} \right|\]
\[ \Rightarrow \frac{m - 7}{1 + 7m} = \pm \frac{m + 1}{m - 1}\]
Taking the positive sign, we get:
\[m^2 - 8m + 7 = 7 m^2 + 8m + 1\]
\[ \Rightarrow \left( m + 3 \right)\left( m - \frac{1}{3} \right) = 0\]
\[ \Rightarrow m = - 3, \frac{1}{3}\]
Now, taking the negative sign, we get:
\[\left( m - 7 \right)\left( m - 1 \right) = - \left( 7m + 1 \right)\left( m + 1 \right)\]
\[ \Rightarrow m^2 - 8m + 7 = - 7 m^2 - 8m - 1\]
\[ \Rightarrow m^2 = - 1\text { (not possible) }\]
Equations of the third side is
\[y + 10 = - 3\left( x - 1 \right) \text { and } y + 10 = \frac{1}{3}\left( x - 1 \right)\]
\[ \Rightarrow 3x + y + 7 = 0 \text { and } x - 3y - 31 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (0, 1), (2, 0) and (−1, −2).
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.
The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).