मराठी

A Line is Such that Its Segment Between the Straight Lines 5x − Y − 4 = 0 and 3x + 4y − 4 = 0 is Bisected at the Point (1, 5). Obtain Its Equation. - Mathematics

Advertisements
Advertisements

प्रश्न

A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.

थोडक्यात उत्तर

उत्तर

Let P1P2 be the intercept between the lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0.
Let P1P2 make an angle \[\theta\] with the positive x-axis.

Here, 

\[\left( x_1 , y_1 \right) = A \left( 1, 5 \right)\]

So, the equation of the line passing through A (1, 5) is

\[\frac{x - x_1}{cos\theta} = \frac{y - y_1}{sin\theta}\]

\[ \Rightarrow \frac{x - 1}{cos\theta} = \frac{y - 5}{sin\theta}\]

\[ \Rightarrow \frac{y - 5}{x - 1} = \tan\theta\]

Let \[A P_1 = A P_2 = r\]

Then, the coordinates of \[P_1 \text { and } P_2\] are given by \[\frac{x - 1}{cos\theta} = \frac{y - 5}{sin\theta} = r \text { and } \frac{x - 1}{cos\theta} = \frac{y - 5}{sin\theta} = - r\]

 So, the coordinates of \[P_1 \text { and } P_2\] are  \[\left( 1 + rcos\theta, 5 + r\sin\theta \right) \text { and } \left( 1 - rcos\theta, 5 - r\sin\theta \right)\] respectively.
Clearly,

\[P_1 \text { and } P_2\] lie on 5x − y − 4 = 0 and 3x + 4y − 4 = 0, respectively.

\[\therefore 5\left( 1 + rcos\theta \right) - 5 - r\sin\theta - 4 = 0 \text { and } 3\left( 1 - rcos\theta \right) + 4\left( 5 - r\sin\theta \right) - 4 = 0\]

\[ \Rightarrow r = \frac{4}{5cos\theta - sin\theta} \text { and } r = \frac{19}{3cos\theta + 4sin\theta}\]

\[ \Rightarrow \frac{4}{5cos\theta - sin\theta} = \frac{19}{3cos\theta + 4sin\theta}\]

\[ \Rightarrow 95cos\theta - 19sin\theta = 12cos\theta + 16sin\theta\]

\[ \Rightarrow 83cos\theta = 35sin\theta\]

\[ \Rightarrow tan\theta = \frac{83}{35}\]

Thus, the equation of the required line is

\[\frac{y - 5}{x - 1} = tan\theta\]

\[ \Rightarrow \frac{y - 5}{x - 1} = \frac{83}{35}\]

\[ \Rightarrow 83x - 35y + 92 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.8 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.8 | Q 12 | पृष्ठ ६६

संबंधित प्रश्‍न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + b, a − b)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line which cuts off equal positive intercepts on the axes and their product is 25.


Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point. 


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.


Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×