मराठी

If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.

रिकाम्या जागा भरा

उत्तर

If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through (1, – 2).

Explanation:

Given equation is ax + by + c = 0  .....(i)

Since a, b and c are in A.P.

∴ b = `(a + c)/2`

⇒ a + c = 2b

⇒ a – 2b + c = 0   .....(ii)

Comparing equation (i) with eq. (ii) we get,

x = 1, y = – 2

So, the line will pass through (1, – 2).

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Straight Lines - Exercise [पृष्ठ १८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 10 Straight Lines
Exercise | Q 42 | पृष्ठ १८३

संबंधित प्रश्‍न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×