Advertisements
Advertisements
प्रश्न
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
उत्तर
The equation of the line with intercepts a and b is \[\frac{x}{a} + \frac{y}{b} = 1\]
Here, a − b = 2
\[\Rightarrow\] a = b + 2 ... (1)
The line passes through (3, 2).
∴ \[\frac{3}{a} + \frac{2}{b} = 1\] ... (2)
Substituting a = b + 2 in equation (2)
\[\frac{3}{b + 2} + \frac{2}{b} = 1\]
\[ \Rightarrow 3b + 2b + 4 = b^2 + 2b\]
\[ \Rightarrow b^2 - 3b - 4 = 0\]
\[ \Rightarrow \left( b - 4 \right)\left( b + 1 \right) = 0\]
\[ \Rightarrow b = 4, - 1\]
Now, from equation (1)
For b = 4, a = 4 + 2 = 6
For b = − 1, a = − 1 + 2 = 1
Thus, the equations of the lines are
\[\frac{x}{1} + \frac{y}{- 1} = 1 \text { and } \frac{x}{6} + \frac{y}{4} = 1\]
\[ \Rightarrow x - y = 1 \text { and} 2x + 3y = 12\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
Find the equation of the straight lines passing through the following pair of point :
(a cos α, a sin α) and (a cos β, a sin β)
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (0, 1), (2, 0) and (−1, −2).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
If the point (5, 2) bisects the intercept of a line between the axes, then its equation is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.