मराठी

If the Point (5, 2) Bisects the Intercept of a Line Between the Axes, Then Its Equation is - Mathematics

Advertisements
Advertisements

प्रश्न

If the point (5, 2) bisects the intercept of a line between the axes, then its equation is

पर्याय

  •  5x + 2y = 20

  •  2x + 5y = 20

  • 5x − 2y = 20

  •  2x − 5y = 20

MCQ

उत्तर

 2x + 5y = 20

Let the equation of the line be xa+yb=1

The coordinates of the intersection of this line with the coordinate axes are (a, 0) and (0, b).
The midpoint of (a, 0) and (0, b) is (a2,b2)

According to the question:

(a2,b2)=(5,2)

a2=5,b2=2

a=10,b=4

The equation of the required line is given below:

x10+y4=1

2x+5y=20

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.21 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.21 | Q 16 | पृष्ठ १३४

संबंधित प्रश्‍न

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is 35.


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line 3x+y=11.


Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is (2+3,5). Prove that a second side is y+(23)x=6  and find the equation of the third side.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.