मराठी

Find the Equation of the Straight Line Which Passes Through the Point (1,2) and Makes Such an Angle with the Positive Direction of X-axis Whose Sine is 3 5 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].

थोडक्यात उत्तर

उत्तर

Let  \[\theta\] be the inclination of the line with the positive x-axis.
Then, we have,

\[\sin\theta = \frac{3}{5}\]

\[ \Rightarrow \tan\theta = \frac{\sin\theta}{\sqrt{1 - \sin^2 \theta}} = \frac{\frac{3}{5}}{\sqrt{1 - \frac{3^2}{5^2}}}\frac{3}{\sqrt{5^2 - 3^2}} = \frac{3}{4}\]

So, the equation of the line that passes through (1, 2) and has slope \[\frac{3}{4}\] is

\[y - 2 = \frac{3}{4}\left( x - 1 \right)\]

\[ \Rightarrow 3x - 4y + 5 = 0\] 

Hence, the equation of the required line is \[3x - 4y + 5 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: The straight lines - Exercise 23.4 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 23 The straight lines
Exercise 23.4 | Q 5 | पृष्ठ २९

संबंधित प्रश्‍न

Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.


Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equation of the straight line which passes through the point P (2, 6) and cuts the coordinate axes at the point A and B respectively so that \[\frac{AP}{BP} = \frac{2}{3}\] .


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


In what direction should a line be drawn through the point (1, 2) so that its point of intersection with the line x + y = 4 is at a distance `sqrt(6)/3` from the given point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×