Advertisements
Advertisements
प्रश्न
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
उत्तर
Given equations are x – y + 1 = 0 ......(i)
And 2x – 3y + 5 = 0 ......(ii)
Solving equation (i) and equation (ii) we get
2x – 2y + 2 = 0
2x – 3y + 5 = 0
(–) (+) (–)
y – 3 = 0
∴ y = 3
From equation (i) we have
x – 3 + 1 = 0
⇒ x = 2
So, (2, 3) is the point of intersection of equation (i) and equation (ii).
Let m be the slope of the required line
∴ Equation of the line is y – 3 = m(x – 2)
⇒ y – 3 = mx – 2m
⇒ mx – y + 3 – 2m = 0
Since, the perpendicular distance from (3, 2) to the line is `7/5`
Then `7/5 = |(m(3) - 2 + 3 - 2m)/sqrt(m^2 + 1)|`
Since, the perpendicular distance from (3, 2) to the line is `49/25 = ((3m - 2 + 3 - 2m)^2)/(m^2 + 1)`
⇒ `49/25 = (m + 1)^2/(m^2 + 1)`
⇒ 49m2 + 49 = 25m2 + 50m + 25
⇒ 49m2 – 25m2 – 50m + 49 – 25 = 0
⇒ 24m2 – 50m + 24 = 0
⇒ 12m2 – 25m + 12 = 0
⇒ 12m2 – 16m – 9m + 12 = 0
⇒ 4m(3m – 4) – 3(3m – 4) = 0
⇒ (3m – 4)(4m – 3) = 0
⇒ 3m – 4 = 0 and 4m – 3 = 0
∴ m = `4/3,3/4`
Equation of the line taking m = `4/3` is
y – 3 = `4/3(x - 2)`
⇒ 3y – 9 = 4x – 8
⇒ 4x – 3y + 1 = 0
Equation of the line taking m = `3/4` is
y – 3 = `3/4(x - 2)`
⇒ 4y – 12 = 3x – 6
⇒ 3x – 4y + 6 = 0
Hence, the required equations are 4x – 3y + 1 = 0 and 3x – 4y + 6 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.
If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.