Advertisements
Advertisements
Question
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
Solution
Given equations are x – y + 1 = 0 ......(i)
And 2x – 3y + 5 = 0 ......(ii)
Solving equation (i) and equation (ii) we get
2x – 2y + 2 = 0
2x – 3y + 5 = 0
(–) (+) (–)
y – 3 = 0
∴ y = 3
From equation (i) we have
x – 3 + 1 = 0
⇒ x = 2
So, (2, 3) is the point of intersection of equation (i) and equation (ii).
Let m be the slope of the required line
∴ Equation of the line is y – 3 = m(x – 2)
⇒ y – 3 = mx – 2m
⇒ mx – y + 3 – 2m = 0
Since, the perpendicular distance from (3, 2) to the line is `7/5`
Then `7/5 = |(m(3) - 2 + 3 - 2m)/sqrt(m^2 + 1)|`
Since, the perpendicular distance from (3, 2) to the line is `49/25 = ((3m - 2 + 3 - 2m)^2)/(m^2 + 1)`
⇒ `49/25 = (m + 1)^2/(m^2 + 1)`
⇒ 49m2 + 49 = 25m2 + 50m + 25
⇒ 49m2 – 25m2 – 50m + 49 – 25 = 0
⇒ 24m2 – 50m + 24 = 0
⇒ 12m2 – 25m + 12 = 0
⇒ 12m2 – 16m – 9m + 12 = 0
⇒ 4m(3m – 4) – 3(3m – 4) = 0
⇒ (3m – 4)(4m – 3) = 0
⇒ 3m – 4 = 0 and 4m – 3 = 0
∴ m = `4/3,3/4`
Equation of the line taking m = `4/3` is
y – 3 = `4/3(x - 2)`
⇒ 3y – 9 = 4x – 8
⇒ 4x – 3y + 1 = 0
Equation of the line taking m = `3/4` is
y – 3 = `3/4(x - 2)`
⇒ 4y – 12 = 3x – 6
⇒ 3x – 4y + 6 = 0
Hence, the required equations are 4x – 3y + 1 = 0 and 3x – 4y + 6 = 0
APPEARS IN
RELATED QUESTIONS
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').
The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.
Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3) x + y` = 1 is ______.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.