English

Find the Equation of the Straight Line Which Divides the Join of the Points (2, 3) and (−5, 8) in the Ratio 3 : 4 and is Also Perpendicular to It. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.

Answer in Brief

Solution

Let the required line divide the line joining the points \[A \left( 2, 3 \right) \text { and } B \left( - 5, 8 \right)\] at P (x1, y1).
Here, AP : PB = 3 : 4

\[\therefore P \left( x_1 , y_1 \right) = \left( \frac{4 \times 2 - 5 \times 3}{3 + 4}, \frac{4 \times 3 + 3 \times 8}{3 + 4} \right) = \left( - 1, \frac{36}{7} \right)\]

Now, slope of AB = \[\frac{8 - 3}{- 5 - 2} = - \frac{5}{7}\]

Let m be the slope of the required line.
Since, the required line is perpendicular to the line joining the points \[A \left( 2, 3 \right) \text { and } B \left( - 5, 8 \right)\]

\[\therefore m \times \text {Slope of the line joining the points }A\left( 2, 3 \right) \text { and } B\left( - 5, 8 \right) = - 1\]

\[ \Rightarrow m \times \left( \frac{- 5}{7} \right) = - 1\]

\[ \Rightarrow m = \frac{7}{5}\]

Substituting

\[m = \frac{7}{5}, x_1 = - 1\text {  and }y_1 = \frac{36}{7}\] in \[y - y_1 = m\left( x - x_1 \right)\] we get,

\[y - \frac{36}{7} = \frac{7}{5}\left( x + 1 \right)\]

\[ \Rightarrow 35y - 180 = 49x + 49\]

\[ \Rightarrow 49x - 35y + 229 = 0\]

Hence, the equation of the required line is \[49x - 35y + 229 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.4 | Q 10 | Page 29

RELATED QUESTIONS

Find the equation of the line parallel to x-axis and passing through (3, −5).


Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.


Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.


A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.


Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×