English

Find the Equation of the Line Passing Through the Intersection of the Lines 2x + Y = 5 and X + 3y + 8 = 0 and Parallel to the Line 3x + 4y = 7. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.

Answer in Brief

Solution

The point of intersection of lines 2x + y = 5 and x + 3y + 8 = 0 is given by  \[\left( \frac{23}{5}, - \frac{21}{5} \right)\]

Now, the slope of the line 3x + 4y = 7  \[\text { or } y = - \frac{3}{4}x + \frac{7}{4}\] is \[- \frac{3}{4}\]

Now, we know that the slopes of two parallel lines are equal.
So, the slope of the required line is \[- \frac{3}{4}\]

Now, the equation of the required line passing through \[\left( \frac{23}{5}, - \frac{21}{5} \right)\]  and having slope \[- \frac{3}{4}\] is given by

\[y + \frac{21}{5} = - \frac{3}{4}\left( x - \frac{23}{5} \right)\]

\[ \Rightarrow y + \frac{21}{5} = - \frac{3}{4}x + \frac{69}{20}\]

\[ \Rightarrow y + \frac{3}{4}x = \frac{69}{20} - \frac{21}{5}\]

\[ \Rightarrow 20y + 15x = - 15\]

\[ \Rightarrow 3x + 4y + 3 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 78]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 16 | Page 78

RELATED QUESTIONS

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the straight line passing through the point (6, 2) and having slope − 3.


Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(0, −a) and (b, 0)


Find the equation of the straight lines passing through the following pair of point :

(at1, a/t1) and (at2, a/t2)


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.


A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.


Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×