English

A Line Passes Through the Point (2, 2) and is Perpendicular to the Line 3x + Y = 3. Its Y-intercept is - Mathematics

Advertisements
Advertisements

Question

A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is

Options

  • \[\frac{1}{3}\]

  • 2/3

  • 1

  • 4/3

MCQ

Solution

4/3

The equation of the line perpendicular to 3x + y = 3 is given below:

x \[-\] 3y + \[\lambda\] = 0

This line passes through (2, 2)

2 \[-\] 6 + \[\lambda\] = 0

\[\Rightarrow \lambda = 4\]

So, the equation of the line will be

x\[-\] 3y + 4 = 0 

\[\Rightarrow y = \frac{1}{3}x + \frac{4}{3}\]

Hence, the y-intercept is \[\frac{4}{3}\].

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 6 | Page 133

RELATED QUESTIONS

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).


Find the equation of the straight lines passing through the following pair of point :

(0, 0) and (2, −2)


Find the equation of the straight lines passing through the following pair of point :

(a, b) and (a + c sin α, b + c cos α)


Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.


Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.


Find the equation of the line which passes through the point (3, 4) and is such that the portion of it intercepted between the axes is divided by the point in the ratio 2:3.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.


The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×