English

Find the Equations of the Two Straight Lines Through (1, 2) Forming Two Sides of a Square of Which 4x + 7y = 12 is One Diagonal. - Mathematics

Advertisements
Advertisements

Question

Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.

Answer in Brief

Solution

Let A (1, 2) be the vertex of square ABCD and BD be one diagonal, whose equation is 4x + 7y = 12

Here, we have to find the equations of sides AB and AD, each of which makes an angle of \[{45}^\circ\]  with line 4x + 7y = 12

We know the equations of two lines passing through a point \[\left( x_1 , y_1 \right)\] and making an angle \[\alpha\] with the line whose slope is m.

\[y -  y_1  = \frac{m \pm \tan\alpha}{1 \mp m\tan\alpha}\left( x - x_1 \right)\]
Here,

Equation of the given line is

\[4x + 7y = 9\]

\[ \Rightarrow y = - \frac{4}{7}x + \frac{9}{4}\]

\[\therefore x_1 = 1, y_1 = 2, \alpha = {45}^\circ , m = - \frac{4}{7}\]

So, the equations of the required sides are

\[y - 2 = \frac{- \frac{4}{7} + \tan {45}^\circ}{1 + \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - \tan {45}^\circ}{1 - \frac{4}{7}\tan {45}^\circ}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \frac{- \frac{4}{7} + 1}{1 + \frac{4}{7}}\left( x - 1 \right) \text { and } y - 2 = \frac{- \frac{4}{7} - 1}{1 - \frac{4}{7}}\left( x - 1 \right)\]

\[ \Rightarrow y - 2 = \frac{3}{11}\left( x - 1 \right) \text { and } y - 2 = \frac{- 11}{3}\left( x - 1 \right)\]

\[ \Rightarrow 3x - 11y + 19 = 0\text {  and } 11x + 3y - 17 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.18 [Page 125]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.18 | Q 8 | Page 125

RELATED QUESTIONS

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of a line equidistant from the lines y = 10 and y = − 2.


Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Prove that the perpendicular drawn from the point (4, 1) on the join of (2, −1) and (6, 5) divides it in the ratio 5 : 8.


Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).


Find the equation of the straight lines passing through the following pair of point :

(a cos α, a sin α) and (a cos β, a sin β)


Find the equations of the sides of the triangles the coordinates of whose angular point is  respectively  (0, 1), (2, 0) and (−1, −2).


Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.


The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin  β).


Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].


Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].


Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).


The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\]  and find the equation of the third side.


Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.


Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.


Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is


A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×