Advertisements
Advertisements
Question
Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.
Solution
To find the point intersection of the lines x + 2y = 5 and x − 3y = 7, let us solve them.
\[\frac{x}{- 14 - 15} = \frac{y}{- 5 + 7} = \frac{1}{- 3 - 2}\]
\[ \Rightarrow x = \frac{29}{5}, y = - \frac{2}{5}\]
So, the equation of the line passing through
\[y + \frac{2}{5} = 5\left( x - \frac{29}{5} \right)\]
\[ \Rightarrow 5y + 2 = 25x - 145\]
\[ \Rightarrow 25x - 5y - 147 = 0\]
Let d be the perpendicular distance from the point (1, 2) to the line
APPEARS IN
RELATED QUESTIONS
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equation of the line passing through the point (−3, 5) and perpendicular to the line joining (2, 5) and (−3, 6).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).
The owner of a milk store finds that he can sell 980 litres milk each week at Rs 14 per liter and 1220 liters of milk each week at Rs 16 per liter. Assuming a linear relationship between selling price and demand, how many liters could he sell weekly at Rs 17 per liter.
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Write the area of the triangle formed by the coordinate axes and the line (sec θ − tan θ) x + (sec θ + tan θ) y = 2.
If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.
Write the integral values of m for which the x-coordinate of the point of intersection of the lines y = mx + 1 and 3x + 4y = 9 is an integer.
If a, b, c are in A.P., then the line ax + by + c = 0 passes through a fixed point. Write the coordinates of that point.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The lines ax + 2y + 1 = 0, bx + 3y + 1 = 0 and cx + 4y + 1 = 0 are concurrent if a, b, c are in G.P.