Advertisements
Advertisements
Question
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Solution
Let the line 3x + y = 12 intersect the x-axis and the y-axis at A and B, respectively.
At x = 0
0 + y = 12
\[\Rightarrow\] y = 12
At y = 0
3x + 0 = 12
\[\Rightarrow\] x = 4
\[\therefore A \equiv \left( 4, 0 \right) \text{and } B \equiv \left( 0, 12 \right)\]
Let
\[y = m_1 x \text { and } y = m_2 x\] be the lines that pass through the origin and trisect the line 3x + y = 12 at P and Q.
∴ AP = PQ = QB
Let us find the coordinates of P and Q.
\[P \equiv \left( \frac{2 \times 4 + 1 \times 0}{2 + 1}, \frac{2 \times 0 + 1 \times 12}{2 + 1} \right) \equiv \left( \frac{8}{3}, 4 \right)\]
\[Q \equiv \left( \frac{1 \times 4 + 2 \times 0}{2 + 1}, \frac{1 \times 0 + 2 \times 12}{2 + 1} \right) \equiv \left( \frac{4}{3}, 8 \right)\]
Clearly, P and Q lie on \[y = m_1 x \text { and } y = m_2 x\] ,respectively.
\[\therefore 4 = m_1 \times \frac{8}{3} \text { and }8 = m_2 \times \frac{4}{3}\]
\[ \Rightarrow m_1 = \frac{3}{2} \text { and} m_2 = 6\]
Hence, the required lines are
\[y = \frac{3}{2}x \Rightarrow 2y = 3x \text { and } y = 6x\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the line passing through (0, 0) with slope m.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(0, −a) and (b, 0)
Find the equation of the straight lines passing through the following pair of point :
(a cos α, a sin α) and (a cos β, a sin β)
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.
A straight line passes through the point (α, β) and this point bisects the portion of the line intercepted between the axes. Show that the equation of the straight line is \[\frac{x}{2 \alpha} + \frac{y}{2 \beta} = 1\].
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Find the equations of the two straight lines through (1, 2) forming two sides of a square of which 4x+ 7y = 12 is one diagonal.
Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
The equation of the straight line which passes through the point (−4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.