Advertisements
Advertisements
Question
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
Solution
The rectangles formed by the lines x = a, x = a', y = b and y = b' is shown below:
Clearly, the vertices of the rectangle are
\[A \left( a, b \right), B \left( a^{\prime},b\right), C \left( a^{\prime} , b^{\prime} \right) \text { and } D \left( a, b^{\prime} \right)\].
The diagonal passing through
\[A \left( a, b \right) \text { and} C \left( a^{\prime} , b^{\prime}\right)\] is
\[y - b = \frac{b^{\prime} - b}{a^{\prime} - a}\left( x - a \right)\]
\[ \Rightarrow \left( a^{\prime} - a \right)y - b\left( a^{\prime}- a \right) = \left( b^{\prime}- b \right)x - a\left( b^{\prime} - b \right)\]
\[ \Rightarrow \left( a^{\prime} - a \right)y - \left( b^{\prime} - b \right)x = - a\left( b^{\prime} - b \right) + b\left( a^{\prime} - a \right)\]
\[ \Rightarrow \left( a^{\prime}- a \right)y - \left( b^{\prime} - b \right)x = b a^{\prime} - a b^{\prime}\]
And, the diagonal passing through
\[B \left( a^{\prime} , b \right) \text { and } D \left( a, b^{\prime} \right)\] is
\[y - b = \frac{b^{\prime} - b}{a - a^{\prime}}\left( x - a^{\prime} \right)\]
\[ \Rightarrow \left( a - a^{\prime} \right)y - b\left( a - a^{\prime} \right) = \left( b^{\prime} - b \right)x - a^{\prime} \left( b^{\prime}- b \right)\]
\[ \Rightarrow \left( a - a^{\prime} \right)y - \left( b^{\prime} - b \right)x = - a^{\prime}\left( b^{\prime} - b \right) + b\left( a - a^{\prime} \right)\]
\[ \Rightarrow \left( a^{\prime} - a \right)y + \left( b^{\prime}- b \right)x = a^{\prime} b^{\prime} - ab\]
Hence, the equations of the diagonals are
APPEARS IN
RELATED QUESTIONS
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equation of the straight line passing through the point (6, 2) and having slope − 3.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.
Find the equation to the straight line which passes through the point (5, 6) and has intercepts on the axes
(i) equal in magnitude and both positive,
(ii) equal in magnitude but opposite in sign.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
Find the equation of the straight line passing through the point (2, 1) and bisecting the portion of the straight line 3x − 5y = 15 lying between the axes.
A line is such that its segment between the straight lines 5x − y − 4 = 0 and 3x + 4y − 4 = 0 is bisected at the point (1, 5). Obtain its equation.
Find the equation of the line passing through the intersection of the lines 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Find the equation of the straight line passing through the point of intersection of the lines 5x − 6y − 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x − 5y + 11 = 0 .
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the equations to the straight lines which pass through the origin and are inclined at an angle of 75° to the straight line \[x + y + \sqrt{3}\left( y - x \right) = a\].
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
Two sides of an isosceles triangle are given by the equations 7x − y + 3 = 0 and x + y − 3 = 0 and its third side passes through the point (1, −10). Determine the equation of the third side.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
Find the equation of the straight line which passes through the point of intersection of the lines 3x − y = 5 and x + 3y = 1 and makes equal and positive intercepts on the axes.
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3) x + y` = 1 is ______.