Advertisements
Advertisements
Question
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Solution
Let A (−1, 6), B (−3, −9) and C (5, −8) be the coordinates of the given triangle.
Let D, E and F be midpoints of BC, CA and AB, respectively.
So, the coordinates of D, E and F are
\[D \equiv \left( \frac{- 3 + 5}{2}, \frac{- 9 - 8}{2} \right) = \left( 1, \frac{- 17}{2} \right)\]
\[E \equiv \left( \frac{- 1 + 5}{2}, \frac{6 - 8}{2} \right) = \left( 2, - 1 \right)\]
\[F \equiv \left( \frac{- 1 - 3}{2}, \frac{6 - 9}{2} \right) = \left( - 2, - \frac{3}{2} \right)\]
Median AD passes through
\[A \left( - 1, 6 \right) \text { and } D \left( 1, - \frac{17}{2} \right)\]
So, its equation is
\[y - 6 = \frac{- \frac{17}{2} - 6}{1 + 1}\left( x + 1 \right)\]
\[ \Rightarrow 4y - 24 = - 29x - 29\]
\[ \Rightarrow 29x + 4y + 5 = 0\]
Median BE passes through \[B \left( - 3, - 9 \right) \text { and } E \left( 2, - 1 \right)\]
So, its equation is
\[y + 9 = \frac{- 1 + 9}{2 + 3}\left( x + 3 \right)\]
\[ \Rightarrow 5y + 45 = 8x + 24\]
\[ \Rightarrow 8x - 5y - 21 = 0\]
Median CF passes through
\[C \left( 5, - 8 \right) \text { and } F \left( - 2, - \frac{3}{2} \right)\]
So, its equation is
\[y + 8 = \frac{- \frac{3}{2} + 8}{- 2 - 5}\left( x - 5 \right)\]
\[ \Rightarrow - 14y - 112 = 13x - 65\]
\[ \Rightarrow 13x + 14y + 47 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the line perpendicular to x-axis and having intercept − 2 on x-axis.
Find the equation of the line parallel to x-axis and having intercept − 2 on y-axis.
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of a line equidistant from the lines y = 10 and y = − 2.
Find the equation of the line passing through \[(2, 2\sqrt{3})\] and inclined with x-axis at an angle of 75°.
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(0, 0) and (2, −2)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation of the straight line which passes through (1, −2) and cuts off equal intercepts on the axes.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.
Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.
The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.
Find the length of the perpendicular from the origin to the straight line joining the two points whose coordinates are (a cos α, a sin α) and (a cos β, a sin β).
Find the length of the perpendicular from the point (4, −7) to the line joining the origin and the point of intersection of the lines 2x − 3y + 14 = 0 and 5x + 4y − 7 = 0.
Find the equation of the straight lines passing through the origin and making an angle of 45° with the straight line \[\sqrt{3}x + y = 11\].
Find the equations of the straight lines passing through (2, −1) and making an angle of 45° with the line 6x + 5y − 8 = 0.
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
The equation of one side of an equilateral triangle is x − y = 0 and one vertex is \[(2 + \sqrt{3}, 5)\]. Prove that a second side is \[y + (2 - \sqrt{3}) x = 6\] and find the equation of the third side.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
A line passes through the point (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
If a, b, c are in A.P., then the straight lines ax + by + c = 0 will always pass through ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.
The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).