English

Find the Equation of the Straight Line Passing Through the Point (6, 2) and Having Slope − 3. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the straight line passing through the point (6, 2) and having slope − 3.

Answer in Brief

Solution

Here,

\[m = - 3, x_1 = 6 \text { and } y_1 = 2\]

Substituting these values in \[y - y_1 = m\left( x - x_1 \right)\] ,  we get,

\[y - 2 = - 3\left( x - 6 \right)\]

\[ \Rightarrow y - 2 = - 3x + 18\]

\[ \Rightarrow 3x + y - 20 = 0\]

Hence, the equation of the required line is \[3x + y - 20 = 0\]

shaalaa.com
Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.4 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.4 | Q 1 | Page 29

RELATED QUESTIONS

Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.


Find the equation of the line passing through (0, 0) with slope m.


Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].


Find the equation of the straight line passing through (3, −2) and making an angle of 60° with the positive direction of y-axis.


Find the equation to the straight line which bisects the distance between the points (a, b), (a', b') and also bisects the distance between the points (−a, b) and (a', −b').


In what ratio is the line joining the points (2, 3) and (4, −5) divided by the line passing through the points (6, 8) and (−3, −2).


The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.


Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.


Find the equation to the straight line cutting off intercepts − 5 and 6 from the axes.


Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.


Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.


Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.


Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.


A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.


The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.


Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.


If the straight line \[\frac{x}{a} + \frac{y}{b} = 1\] passes through the point of intersection of the lines x + y = 3 and 2x − 3y = 1 and is parallel to x − y − 6 = 0, find a and b.


Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.


Find the equation of a line passing through (3, −2) and perpendicular to the line x − 3y + 5 = 0.


Find the equation of a line drawn perpendicular to the line \[\frac{x}{4} + \frac{y}{6} = 1\] through the point where it meets the y-axis.


The line 2x + 3y = 12 meets the x-axis at A and y-axis at B. The line through (5, 5) perpendicular to AB meets the x-axis and the line AB at C and E respectively. If O is the origin of coordinates, find the area of figure OCEB.


Find the distance of the point (1, 2) from the straight line with slope 5 and passing through the point of intersection of x + 2y = 5 and x − 3y = 7.


Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.


Find the equations of two straight lines passing through (1, 2) and making an angle of 60° with the line x + y = 0. Find also the area of the triangle formed by the three lines.


The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.


Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.


If the diagonals of the quadrilateral formed by the lines l1x + m1y + n1 = 0, l2x + m2y + n2 = 0, l1x + m1y + n1' = 0 and l2x + m2y + n2' = 0 are perpendicular, then write the value of l12 − l22 + m12 − m22.


If a, b, c are in G.P. write the area of the triangle formed by the line ax + by + c = 0 with the coordinates axes.


If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point


If the point (5, 2) bisects the intercept of a line between the axes, then its equation is


Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.


Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.


The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.


The straight line 5x + 4y = 0 passes through the point of intersection of the straight lines x + 2y – 10 = 0 and 2x + y + 5 = 0.


The equation of the line joining the point (3, 5) to the point of intersection of the lines 4x + y – 1 = 0 and 7x – 3y – 35 = 0 is equidistant from the points (0, 0) and (8, 34).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×