Advertisements
Advertisements
Question
Find the equation of the line passing through the point of intersection of 2x + y = 5 and x + 3y + 8 = 0 and parallel to the line 3x + 4y = 7.
Solution
Given that: 2x + y = 5 .....(i)
x + 3y + 8 = 0 ......(ii)
3x + 4y = 7 ......(iii)
Equation of any line passing through the point of intersection of equation (i) and equation (ii) is
(2x + y – 5) + λ(x + 3y + 8) = 0 ......(iv) (λ = constant)
⇒ 2x + y – 5 + λx + 3λy + 8λ = 0
⇒ (2 + λ)x + (1 + 3λ)y – 5 + 8λ = 0
Slope of line m1 (say) = `(-(2 + lambda))/(1 + 3lambda)` .....`[because "m" = (-"a")/"b"]`
Now slope of line 3x + 4y = 7 is m2 (say) = `- 3/4`
If equation (iii) is parallel to equation (iv) then
m1 = m2
⇒ `(-(2 + lambda))/(1 + 3lambda) = - 3/4`
⇒ `(2 + lambda)/(1 + 3lambda) = 3/4`
⇒ 8 + 4λ = 3 + 9λ
⇒ 9λ – 4λ = 5
⇒ 5λ = 5
⇒ λ = 1
On putting the value of λ in equation (iv) we get
(2x + y – 5) + 1(x + 3y + 8) = 0
⇒ 2x + y – 5 + x + 3y + 8 = 0
⇒ 3x + 4y + 3 = 0
Hence, the required equation is 3x + 4y + 3 = 0.
APPEARS IN
RELATED QUESTIONS
Find the equation of the line parallel to x-axis and passing through (3, −5).
Find the equations of the straight lines which pass through (4, 3) and are respectively parallel and perpendicular to the x-axis.
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + b, a − b)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equation of the straight lines passing through the following pair of point :
(a cos α, a sin α) and (a cos β, a sin β)
By using the concept of equation of a line, prove that the three points (−2, −2), (8, 2) and (3, 0) are collinear.
Find the equation of the line which passes through the point (− 4, 3) and the portion of the line intercepted between the axes is divided internally in the ratio 5 : 3 by this point.
Find the equation of a line which passes through the point (22, −6) and is such that the intercept of x-axis exceeds the intercept of y-axis by 5.
Find the equation of the line passing through the point (2, 2) and cutting off intercepts on the axes whose sum is 9.
Find the equation of the straight line passing through the origin and bisecting the portion of the line ax + by + c = 0 intercepted between the coordinate axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
Find the equation of a line passing through the point (2, 3) and parallel to the line 3x − 4y + 5 = 0.
Find the equations to the straight lines which pass through the point (h, k) and are inclined at angle tan−1 m to the straight line y = mx + c.
Find the equations to the sides of an isosceles right angled triangle the equation of whose hypotenues is 3x + 4y = 4 and the opposite vertex is the point (2, 2).
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Prove that the family of lines represented by x (1 + λ) + y (2 − λ) + 5 = 0, λ being arbitrary, pass through a fixed point. Also, find the fixed point.
Find the equation of the straight line passing through the point of intersection of 2x + y − 1 = 0 and x + 3y − 2 = 0 and making with the coordinate axes a triangle of area \[\frac{3}{8}\] sq. units.
Find the equations of the lines through the point of intersection of the lines x − 3y + 1 = 0 and 2x + 5y − 9 = 0 and whose distance from the origin is \[\sqrt{5}\].
Write the equation of the line passing through the point (1, −2) and cutting off equal intercepts from the axes.
Find the locus of the mid-points of the portion of the line x sinθ+ y cosθ = p intercepted between the axes.
If a + b + c = 0, then the family of lines 3ax + by + 2c = 0 pass through fixed point
The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.