Advertisements
Advertisements
Question
Find the equations to the altitudes of the triangle whose angular points are A (2, −2), B (1, 1) and C (−1, 0).
Solution
Let \[m_{AD} , m_{BE} \text { and } m_{CF}\] be the slopes of the altitudes AD, BE and CF, respectively.
\[\therefore\text { Slope of AD } \times \text { Slope of BC } = - 1\]
\[ \Rightarrow m_{AD} \times \left( \frac{0 - 1}{- 1 - 1} \right) = - 1\]
\[ \Rightarrow m_{AD} \times \frac{1}{2} = - 1\]
\[ \Rightarrow m_{AD} = - 2\]
\[\text { Slope of BE } \times \text { Slope of AC } = - 1\]
\[ \Rightarrow m_{BE} \times \left( \frac{0 + 2}{- 1 - 2} \right) = - 1\]
\[ \Rightarrow m_{BE} \times \left( \frac{- 2}{3} \right) = - 1\]
\[ \Rightarrow m_{BE} = \frac{3}{2}\]
\[\text { Slope of CF } \times \text { Slope of AB } = - 1\]
\[ \Rightarrow m_{CF} \times \left( \frac{1 + 2}{1 - 2} \right) = - 1\]
\[ \Rightarrow m_{CF} \times \left( - 3 \right) = - 1\]
\[ \Rightarrow m_{CF} = \frac{1}{3}\]
Now, the equation of AD which passes through A (2, −2) and has slope −2 is
\[y + 2 = - 2\left( x - 2 \right)\]
\[ \Rightarrow 2x + y - 2 = 0\]
The equation of BE, which passes through B (1, 1) and has slope \[\frac{3}{2}\] is
\[y - 1 = \frac{3}{2}\left( x - 1 \right)\]
\[ \Rightarrow 3x - 2y - 1 = 0\]
The equation of CF, which passes through C (−1, 0) and has slope \[\frac{1}{3}\] is
\[y - 0 = \frac{1}{3}\left( x + 1 \right)\]
\[ \Rightarrow x - 3y + 1 = 0\]
APPEARS IN
RELATED QUESTIONS
Draw the lines x = − 3, x = 2, y = − 2, y = 3 and write the coordinates of the vertices of the square so formed.
Find the equation of the straight line passing through (−2, 3) and inclined at an angle of 45° with the x-axis.
Find the equation of the straight line which passes through the point (1,2) and makes such an angle with the positive direction of x-axis whose sine is \[\frac{3}{5}\].
Find the equation of the straight line which divides the join of the points (2, 3) and (−5, 8) in the ratio 3 : 4 and is also perpendicular to it.
Find the equation of the straight lines passing through the following pair of point :
(a, b) and (a + c sin α, b + c cos α)
Find the equation of the straight lines passing through the following pair of point :
(at1, a/t1) and (at2, a/t2)
Find the equation of the straight lines passing through the following pair of point :
(a cos α, a sin α) and (a cos β, a sin β)
Find the equations of the sides of the triangles the coordinates of whose angular point is respectively (0, 1), (2, 0) and (−1, −2).
Find the equations of the medians of a triangle, the coordinates of whose vertices are (−1, 6), (−3, −9) and (5, −8).
Find the equations to the diagonals of the rectangle the equations of whose sides are x = a, x = a', y= b and y = b'.
The vertices of a quadrilateral are A (−2, 6), B (1, 2), C (10, 4) and D (7, 8). Find the equation of its diagonals.
The length L (in centimeters) of a copper rod is a linear function of its celsius temperature C. In an experiment, if L = 124.942 when C = 20 and L = 125.134 when C = 110, express L in terms of C.
Find the equations to the straight lines which go through the origin and trisect the portion of the straight line 3 x + y = 12 which is intercepted between the axes of coordinates.
Find the equation to the straight line cutting off intercepts 3 and 2 from the axes.
Find the equation of the straight line which passes through the point (−3, 8) and cuts off positive intercepts on the coordinate axes whose sum is 7.
Find the equation of the line, which passes through P (1, −7) and meets the axes at A and Brespectively so that 4 AP − 3 BP = 0.
Find the equations of the straight lines each of which passes through the point (3, 2) and cuts off intercepts a and b respectively on X and Y-axes such that a − b = 2.
Find the equations of the straight lines which pass through the origin and trisect the portion of the straight line 2x + 3y = 6 which is intercepted between the axes.
A straight line drawn through the point A (2, 1) making an angle π/4 with positive x-axis intersects another line x + 2y + 1 = 0 in the point B. Find length AB.
The straight line through P (x1, y1) inclined at an angle θ with the x-axis meets the line ax + by + c = 0 in Q. Find the length of PQ.
Find the equation of straight line passing through (−2, −7) and having an intercept of length 3 between the straight lines 4x + 3y = 12 and 4x + 3y = 3.
Find the equation of the line passing through the point of intersection of the lines 4x − 7y − 3 = 0 and 2x − 3y + 1 = 0 that has equal intercepts on the axes.
Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.
Find the equation of the straight line through the point (α, β) and perpendicular to the line lx + my + n = 0.
Find the equation of the straight line perpendicular to 5x − 2y = 8 and which passes through the mid-point of the line segment joining (2, 3) and (4, 5).
Find the equations to the straight lines passing through the point (2, 3) and inclined at and angle of 45° to the line 3x + y − 5 = 0.
The equation of the base of an equilateral triangle is x + y = 2 and its vertex is (2, −1). Find the length and equations of its sides.
Find the equation of the straight line drawn through the point of intersection of the lines x + y = 4 and 2x − 3y = 1 and perpendicular to the line cutting off intercepts 5, 6 on the axes.
Show that the straight lines given by (2 + k) x + (1 + k) y = 5 + 7k for different values of k pass through a fixed point. Also, find that point.
The equation of the line passing through (1, 5) and perpendicular to the line 3x − 5y + 7 = 0 is
The inclination of the straight line passing through the point (−3, 6) and the mid-point of the line joining the point (4, −5) and (−2, 9) is
A straight line moves so that the sum of the reciprocals of its intercepts made on axes is constant. Show that the line passes through a fixed point.
Find the equations of the lines through the point of intersection of the lines x – y + 1 = 0 and 2x – 3y + 5 = 0 and whose distance from the point (3, 2) is `7/5`
The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is ______.
The equations of the lines which pass through the point (3, –2) and are inclined at 60° to the line `sqrt(3) x + y` = 1 is ______.
Equation of the line passing through the point (a cos3θ, a sin3θ) and perpendicular to the line x sec θ + y cosec θ = a is x cos θ – y sin θ = a sin 2θ.