English

Find the Equation of the Strainght Line Intersecting Y-axis at a Distance of 2 Units Above the Origin and Making an Angle of 30° with the Positive Direction of the X-axis. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.

Answer in Brief

Solution

Let m be the slope of the required line.

\[\therefore m = \tan\theta = \tan {30}^\circ = \frac{1}{\sqrt{3}}\]

\[\text { Here, c = y - intercept  }= 2\]

Substituting the values of m and c in y = mx + c, we get:

\[y = \frac{1}{\sqrt{3}}x + 2 \]

\[ \Rightarrow x - \sqrt{3}y + 2\sqrt{3} = 0\]

Hence, the equation of the required line is \[x - \sqrt{3}y + 2\sqrt{3} = 0\] .

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.3 | Q 8 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


What can be said regarding a line if its slope is  zero ?


What can be said regarding a line if its slope is negative?


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×