Advertisements
Advertisements
Question
Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.
Solution
First we find the point of intersection of lines
5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 which is (– 1, – 1).
Also the slope of the line 3x – 5y + 11 = 0 is `3/5`.
Therefore, the slope of the line perpendicular to this line is `(-5)/3` (Why?).
Hence, the equation of the required line is given by
y + 1 = `(-5)/3 (x + 1)`
or 5x + 3y + 8 = 0
Alternatively: The equation of any line through the intersection of lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 is
5x – 6y – 1 + k(3x + 2y + 5) = 0 ....(1)
or Slope of this line is `(-(5 + 3k))/(-6 + 2k)`
Also, slope of the line 3x – 5y + 11 = 0 is `3/5`
Now, both are perpendicular
So `(-(5 + 3k))/(-6 + 2k) xx 3/5` = –1
or k = 45
Therefore, equation of required line in given by
5x – 6y – 1 + 45(3x + 2y + 5) = 0
or 5x + 3y + 8 = 0
APPEARS IN
RELATED QUESTIONS
Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.
The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[- \frac{\pi}{4}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{2\pi}{3}\]
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{3\pi}{4}\]
What is the value of y so that the line through (3, y) and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?
What can be said regarding a line if its slope is negative?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
The slope of a line is double of the slope of another line. If tangents of the angle between them is \[\frac{1}{3}\],find the slopes of the other line.
Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.
A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.
Find the equation of a straight line with slope − 1/3 and y-intercept − 4.
Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.
Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.
Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].
Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.
The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if
The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is
Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.
If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`
Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.
Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.
The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.
The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.