English

The Acute Angle Between the Medians Drawn from the Acute Angles of a Right Angled Isosceles Triangle is - Mathematics

Advertisements
Advertisements

Question

The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 

Options

  • \[\cos^{- 1} \left( \frac{2}{3} \right)\]

  • \[\cos^{- 1} \left( \frac{3}{4} \right)\]

  • \[\cos^{- 1} \left( \frac{4}{5} \right)\]

  • \[\cos^{- 1} \left( \frac{5}{6} \right)\]

MCQ

Solution

\[\cos^{- 1} \left( \frac{4}{5} \right)\]

Let the coordinates of the right-angled isosceles triangle be O(0, 0), A(a, 0) and B(0, a).

Here, BD and AE are the medians drawn from the acute angles B and A, respectively.
∴ Slope of BD = m1

                        =\[\frac{0 - a}{\frac{a}{2} - 0}\]

                    = -2

Slope of AE = m2
                    = \[\frac{\frac{a}{2} - 0}{0 - a}\] 

                  \[= - \frac{1}{2}\]

Let \[\theta\] be the angle between BD and AE.

\[\tan \theta = \left| \frac{- 2 + \frac{1}{2}}{1 + 1} \right|\]

\[ = \frac{3}{4}\]

\[ \Rightarrow \cos \theta = \frac{4}{\sqrt{3^2 + 4^2}}\]

\[ \Rightarrow \cos \theta = \frac{4}{5}\]

\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{4}{5} \right)\]

Hence, the acute angle between the medians is \[\cos^{- 1} \left( \frac{4}{5} \right)\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 2 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find a point on the x-axis, which is equidistant from the points (7, 6) and (3, 4).


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


Find k, if the slope of one of the lines given by kx2 + 8xy + y2 = 0 exceeds the slope of the other by 6.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


The line `x/a + y/b` = 1 moves in such a way that `1/a^2 + 1/b^2 = 1/c^2`, where c is a constant. The locus of the foot of the perpendicular from the origin on the given line is x2 + y2 = c2.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and

Column C1 Column C2
(a) Through the point (2, 1) is (i) 2x – y = 4
(b) Perpendicular to the line (ii) x + y – 5
= 0 x + 2y + 1 = 0 is
(ii) x + y – 5 = 0
(c) Parallel to the line (iii) x – y –1 = 0
3x – 4y + 5 = 0 is
(iii) x – y –1 = 0
(d) Equally inclined to the axes is (iv) 3x – 4y – 1 = 0

If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×