English

Find the Equation of a Straight Line with Slope −2 and Intersecting The X-axis at a Distance of 3 Units to the Left of Origin. - Mathematics

Advertisements
Advertisements

Question

Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.

Answer in Brief

Solution

Here, m = −2
Substituting the value of m in y = mx + c, we get,
y = −2x + c
It is given that the line y = −2x + c intersects the x-axis at a distance of 3 units to the left of the origin.
This means that the required line passes trough the point (−3, 0).

\[\therefore 0 = - 2 \times \left( - 3 \right) + c\]

\[ \Rightarrow c = - 6\]

Hence, the equation of the required line is y = −2x − 6, i.e. 2x + y + 6 = 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.3 [Page 21]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.3 | Q 2.3 | Page 21

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


What can be said regarding a line if its slope is negative?


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If x + y = k is normal to y2 = 12x, then k is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


The point (4, 1) undergoes the following two successive transformations: 
(i) Reflection about the line y = x
(ii) Translation through a distance 2 units along the positive x-axis Then the final coordinates of the point are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×