Advertisements
Advertisements
Question
Slope of a line which cuts off intercepts of equal lengths on the axes is ______.
Options
– 1
– 0
2
`sqrt(3)`
Solution
Slope of a line which cuts off intercepts of equal lengths on the axes is – 1.
Expllanation:
Intercept form of a line is `x/a + y/b` = 1
⇒ `x/a + y/a` = 1 .......(∵ a = b)
⇒ x + y = a
⇒ y = – x + a
∴ Slope is – 1
APPEARS IN
RELATED QUESTIONS
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is
- Parallel to the x-axis,
- Parallel to the y-axis,
- Passing through the origin.
Find the slope of the lines which make the following angle with the positive direction of x-axis:
\[\frac{3\pi}{4}\]
Find the slope of a line passing through the following point:
(−3, 2) and (1, 4)
Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .
If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].
Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Find the equation of a straight line with slope − 1/3 and y-intercept − 4.
Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).
The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.
Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.
The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if
The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.
Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.
If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.
Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.
The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.
If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.
If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.
The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.
The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.
If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.