English

If Three Points a (H, 0), P (A, B) and B (0, K) Lie on a Line, Show That: a H + B K = 1 . - Mathematics

Advertisements
Advertisements

Question

If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].

Answer in Brief

Solution

The given points are A (h, 0), P (a, b) and B (0, k).
Thus, we have,

\[\text { Slope of AP } = \frac{b - 0}{a - h}\]

\[\text { Slope of BP } = \frac{b - k}{a - 0}\]

For the given points to be collinear, we must have,
Slope of AP = Slope of BP

\[\Rightarrow \frac{b - 0}{a - h} = \frac{b - k}{a - 0}\]

\[ \Rightarrow \frac{b}{a - h} = \frac{b - k}{a}\]

\[ \Rightarrow ab = ab - ak - bh + hk\]

\[ \Rightarrow ak + bh = hk\]

\[ \Rightarrow \frac{a}{h} + \frac{b}{k} = 1 \left[\text {  On dividing both sides by hk } \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 12 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Without using distance formula, show that points (–2, –1), (4, 0), (3, 3) and (–3, 2) are vertices of a parallelogram.


The slope of a line is double of the slope of another line. If tangent of the angle between them is `1/3`, find the slopes of the lines.


Find the equation of a line drawn perpendicular to the line `x/4 + y/6 = 1`through the point, where it meets the y-axis.


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


Find the equation of a straight line  with slope − 1/3 and y-intercept − 4.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Prove that the straight lines (a + b) x + (a − b ) y = 2ab, (a − b) x + (a + b) y = 2ab and x + y = 0 form an isosceles triangle whose vertical angle is 2 tan−1 \[\left( \frac{a}{b} \right)\].


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The equation of the line with slope −3/2 and which is concurrent with the lines 4x + 3y − 7 = 0 and 8x + 5y − 1 = 0 is


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The reflection of the point (4, – 13) about the line 5x + y + 6 = 0 is ______.


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


Find the equation of one of the sides of an isosceles right angled triangle whose hypotenuse is given by 3x + 4y = 4 and the opposite vertex of the hypotenuse is (2, 2).


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×