English

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle. - Mathematics

Advertisements
Advertisements

Question

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.

Sum

Solution

Let ABC be the given equilateral triangle with side 2a.

Accordingly, AB = BC = CA = 2a

Assume that base BC lies along the y-axis such that the mid-point of BC is at the origin.

i.e., BO = OC = a, where O is the origin.

Now, it is clear that the coordinates of point C are (0, a), while the coordinates of point B are (0, –a).

It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.

Hence, vertex A lies on the y-axis.

On applying Pythagoras theorem to ΔAOC, we obtain

(AC)2 = (OA)2 + (OC)2

⇒ (2a)2 = (OA)2 + a2

⇒ 4a2 – a2 = (OA)2

⇒ (OA)2 = 3a2

⇒ OA = `sqrt3`

∴ Coordinates of point A = `(± sqrt(3a),0)`

Thus, the vertices of the given equilateral triangle are (0, -a) and `(sqrt(3a),0)` or (0, a), (0, -a) and `(-sqrt(3a),0)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise 10.1 [Page 211]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise 10.1 | Q 2 | Page 211

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[- \frac{\pi}{4}\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (5, 6) and (2, 3); through (9, −2) and (6, −5)


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the straight lines which cut off an intercept 5 from the y-axis and are equally inclined to the axes.


Find the coordinates of the orthocentre of the triangle whose vertices are (−1, 3), (2, −1) and (0, 0).


Show that the perpendicular bisectors of the sides of a triangle are concurrent.


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the acute angle between the lines 2x − y + 3 = 0 and x + y + 2 = 0.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


If x + y = k is normal to y2 = 12x, then k is ______.


Find the equation of a straight line on which length of perpendicular from the origin is four units and the line makes an angle of 120° with the positive direction of x-axis.


If the equation of the base of an equilateral triangle is x + y = 2 and the vertex is (2, – 1), then find the length of the side of the triangle.


P1, P2 are points on either of the two lines `- sqrt(3) |x|` = 2 at a distance of 5 units from their point of intersection. Find the coordinates of the foot of perpendiculars drawn from P1, P2 on the bisector of the angle between the given lines.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.


Equations of diagonals of the square formed by the lines x = 0, y = 0, x = 1 and y = 1 are ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The line which passes through the origin and intersect the two lines `(x - 1)/2 = (y + 3)/4 = (z - 5)/3, (x - 4)/2 = (y + 3)/3 = (z - 14)/4`, is ______.


If the line joining two points A (2, 0) and B (3, 1) is rotated about A in anticlockwise direction through an angle of 15°, then the equation of the line in new position is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×