English

Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______. - Mathematics

Advertisements
Advertisements

Question

Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is ______.

Options

  • y + 2 = x + 1

  • y + 2 = 3 (x + 1)

  • y – 2 = 3 (x – 1)

  • y – 2 = x – 1

MCQ
Fill in the Blanks

Solution

Equation of the line passing through (1, 2) and parallel to the line y = 3x – 1 is y – 2 = 3 (x – 1).

Explanation:

Given equation is y = 3x – 1

Slope = 3

Slope of the line passing through the given point (1, 2) and parallel to the given line = 3

So, the equation of the required line is y – 2 = 3(x – 1)

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise [Page 182]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise | Q 34 | Page 182

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the distance between P (x1, y1) and Q (x2, y2) when :

  1. PQ is parallel to the y-axis,
  2. PQ is parallel to the x-axis

Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[- \frac{\pi}{4}\]


Find the slope of the lines which make the following angle with the positive direction of x-axis:

\[\frac{2\pi}{3}\]


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Using the method of slope, show that the following points are collinear A (16, − 18), B (3, −6), C (−10, 6) .


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).


Find the value of x for which the points (x, −1), (2, 1) and (4, 5) are collinear.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


Find the equation of the perpendicular to the line segment joining (4, 3) and (−1, 1) if it cuts off an intercept −3 from y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


If the vertices of a triangle have integral coordinates, then the triangle can not be equilateral.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×