English

Find the Slope of a Line Passing Through the Following Point: (3, −5), and (1, 2) - Mathematics

Advertisements
Advertisements

Question

Find the slope of a line passing through the following point:

(3, −5), and (1, 2)

Answer in Brief

Solution

(3, −5), and (1, 2)

Let m be the slope of the given line.

\[\therefore m = \frac{y_2 - y_1}{x_2 - x_1}\]

\[ \Rightarrow m = \frac{2 + 5}{1 - 3} = - \frac{7}{2}\]

Hence, the slope of the line passing through the points (3, −5), and (1, 2) is \[- \frac{7}{2}\].

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.1 | Q 2.3 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


Find the values of k for which the line (k–3) x – (4 – k2) y + k2 –7k + 6 = 0 is 

  1. Parallel to the x-axis,
  2. Parallel to the y-axis,
  3. Passing through the origin.

Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of a line passing through the following point:

 (−3, 2) and (1, 4)


Find the slope of a line passing through the following point:

\[(a t_1^2 , 2 a t_1 ) \text { and } (a t_2^2 , 2 a t_2 )\]


What is the value of y so that the line through (3, y)  and (2, 7) is parallel to the line through (−1, 4) and (0, 6)?


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the equation of a straight line with slope −2 and intersecting the x-axis at a distance of 3 units to the left of origin.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


The line through (h, 3) and (4, 1) intersects the line 7x − 9y − 19 = 0 at right angle. Find the value of h.


Find the angles between the following pair of straight lines:

3x + y + 12 = 0 and x + 2y − 1 = 0


Find the angles between the following pair of straight lines:

3x − y + 5 = 0 and x − 3y + 1 = 0


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Find the angle between the line joining the points (2, 0), (0, 3) and the line x + y = 1.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is 


The angle between the lines 2x − y + 3 = 0 and x + 2y + 3 = 0 is


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are


The reflection of the point (4, −13) about the line 5x + y + 6 = 0 is  


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If the slopes of the lines given by the equation ax2 + 2hxy + by2 = 0 are in the ratio 5 : 3, then the ratio h2 : ab = ______.


If the slope of a line passing through the point A(3, 2) is `3/4`, then find points on the line which are 5 units away from the point A.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


The intercept cut off by a line from y-axis is twice than that from x-axis, and the line passes through the point (1, 2). The equation of the line is ______.


If p is the length of perpendicular from the origin on the line `x/a + y/b` = 1 and a2, p2, b2 are in A.P, then show that a4 + b4 = 0.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

The three straight lines ax + by = c, bx + cy = a and cx + ay = b are collinear, if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×