Advertisements
Advertisements
Question
Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.
Solution
Let A (−2, −1), B (4, 0), C (3, 3) and D (−3, 2) be the given points.
Now, slope of AB \[= \frac{0 + 1}{4 + 2} = \frac{1}{6}\]
Slope of BC \[= \frac{3 - 0}{3 - 4} = - 3\]
Slope of CD \[= \frac{2 - 3}{- 3 - 3} = \frac{1}{6}\]
Slope of DA \[= \frac{- 1 - 2}{- 2 + 3} = - 3\]
Clearly, we have,
Slope of AB = Slope of CD
Slope of BC = Slope of DA
As the slopes of opposite sides are equal,
Therefore, both pair of opposite sides are parallel.
Hence, the given points are the vertices of a parallelogram.
APPEARS IN
RELATED QUESTIONS
The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.
Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).
Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.
A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).
Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?
Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.
Find the slope of the lines which make the following angle with the positive direction of x-axis: \[\frac{\pi}{3}\]
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
State whether the two lines in each of the following are parallel, perpendicular or neither.
Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)
Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.
Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).
What can be said regarding a line if its slope is zero ?
Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).
Show that the line joining (2, −5) and (−2, 5) is perpendicular to the line joining (6, 3) and (1, 1).
Consider the following population and year graph:
Find the slope of the line AB and using it, find what will be the population in the year 2010.
Find the angle between the X-axis and the line joining the points (3, −1) and (4, −2).
Line through the points (−2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 24). Find the value of x.
Find the equation of a straight line with slope 2 and y-intercept 3 .
Find the equations of the bisectors of the angles between the coordinate axes.
If the image of the point (2, 1) with respect to a line mirror is (5, 2), find the equation of the mirror.
Find the angles between the following pair of straight lines:
3x − y + 5 = 0 and x − 3y + 1 = 0
Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.
If two opposite vertices of a square are (1, 2) and (5, 8), find the coordinates of its other two vertices and the equations of its sides.
Point of the curve y2 = 3(x – 2) at which the normal is parallel to the line 2y + 4x + 5 = 0 is ______.
If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.
The equation of the line passing through (1, 2) and perpendicular to x + y + 7 = 0 is ______.
A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.
Equations of the lines through the point (3, 2) and making an angle of 45° with the line x – 2y = 3 are ______.
The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.
Line joining the points (3, – 4) and (– 2, 6) is perpendicular to the line joining the points (–3, 6) and (9, –18).
The equation of the line through the intersection of the lines 2x – 3y = 0 and 4x – 5y = 2 and
Column C1 | Column C2 |
(a) Through the point (2, 1) is | (i) 2x – y = 4 |
(b) Perpendicular to the line (ii) x + y – 5 = 0 x + 2y + 1 = 0 is |
(ii) x + y – 5 = 0 |
(c) Parallel to the line (iii) x – y –1 = 0 3x – 4y + 5 = 0 is |
(iii) x – y –1 = 0 |
(d) Equally inclined to the axes is | (iv) 3x – 4y – 1 = 0 |
A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). The co-ordinates of the point A is ______.