English

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P. - Mathematics

Advertisements
Advertisements

Question

A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.

Sum

Solution

Let (x1, y1) be the coordinates of the given point P and m be the slope of the line.

∴ Equation of the line is y – y1 = m(x – x1)  .......(i)

Given points are A(2, 0), B(0, 2) and C(1, 1).

Perpendicular distance from A(2, 0) to the line (i) d1 (say)

d1 = `(0 - y_1 - m(2 - x_1))/sqrt(1 + m^2)`

Perpendicular distance from B(0, 2) d2 (say)

d2 = `(2 - y_1 - m(0 - x_1))/sqrt(1 + m^2)`

Similarly, perpendicular distance from C(1, 1) d3 (say)

d3 = `(1 - y_1 - m(1 - x_1))/sqrt(1 + m^2)`

We have d1 + d2 + d3 = 0

∴ `(0 - y_1 - m(2 - x_1))/sqrt(1 + m^2) + (2 - y_1 - m(0 - x_1))/sqrt(1 + m^2) + (1 - y_1 - m(1 - x_1))/sqrt(1 + m^2)` = 0

⇒ – y1 – 2m + mx1 + 2 – y1 + mx1 + 1 – y1 – m + mx1 = 0

⇒ 3mx1 – 3y1 – 3m + 3 = 0

⇒ mx1 – y1 – m + 1 = 0

Since the point (1, 1) satisfies the above equation.

Hence, the point (1, 1) lies on the line.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise [Page 179]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise | Q 14 | Page 179

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Draw a quadrilateral in the Cartesian plane, whose vertices are (–4, 5), (0, 7), (5, –5) and (–4, –2). Also, find its area.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


Find the angle between the x-axis and the line joining the points (3, –1) and (4, –2).


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the slope of the lines which make the following angle with the positive direction of x-axis: 

\[\frac{3\pi}{4}\]


State whether the two lines in each of the following are parallel, perpendicular or neither.

Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


Show that the line joining (2, −3) and (−5, 1) is parallel to the line joining (7, −1) and (0, 3).


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


If three points A (h, 0), P (a, b) and B (0, k) lie on a line, show that: \[\frac{a}{h} + \frac{b}{k} = 1\].


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the angles between the following pair of straight lines:

x − 4y = 3 and 6x − y = 11


Prove that the points (2, −1), (0, 2), (2, 3) and (4, 0) are the coordinates of the vertices of a parallelogram and find the angle between its diagonals.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.


If one diagonal of a square is along the line 8x – 15y = 0 and one of its vertex is at (1, 2), then find the equation of sides of the square passing through this vertex.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


Find the angle between the lines y = `(2 - sqrt(3)) (x + 5)` and y = `(2 + sqrt(3))(x - 7)`


The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is ______.


The coordinates of the foot of perpendiculars from the point (2, 3) on the line y = 3x + 4 is given by ______.


The points A(– 2, 1), B(0, 5), C(– 1, 2) are collinear.


The vertex of an equilateral triangle is (2, 3) and the equation of the opposite side is x + y = 2. Then the other two sides are y – 3 = `(2 +- sqrt(3)) (x - 2)`.


Column C1 Column C2
(a) The coordinates of the points
P and Q on the line x + 5y = 13 which
are at a distance of 2 units from the
line 12x – 5y + 26 = 0 are
(i) (3, 1), (–7, 11)
(b) The coordinates of the point on
the line x + y = 4, which are at a  unit
distance from the line 4x + 3y – 10 = 0 are
(ii) `(- 1/3, 11/3), (4/3, 7/3)`
(c) The coordinates of the point on the line
joining A (–2, 5) and B (3, 1) such that
AP = PQ = QB are
(iii) `(1, 12/5), (-3, 16/5)`

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×