English

A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A. - Mathematics

Advertisements
Advertisements

Question

A ray of light coming from the point (1, 2) is reflected at a point A on the x-axis and then passes through the point (5, 3). Find the coordinates of the point A.

Sum

Solution

Let the incident ray strike x-axis at the point A whose coordinates be (x, 0).

From the figure, the slope of the reflected ray is given by

tan θ = `3/(5 - x)`   .....(1)


Again, the slope of the incident ray is given by

`tan(pi - theta) = (-2)/(x - 1)`   (Why?)

or `- tan theta = (-2)/(x - 1)`  ....(2)

Solving (1) and (2), we get

`3/(5 - x) = 2/(x - 1)` or x = `13/5`

Therefore, the required coordinates of the point A are `13/5, 0`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Solved Examples [Page 172]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Solved Examples | Q 10 | Page 172

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Find the value of x for which the points (x, –1), (2, 1) and (4, 5) are collinear.


A line passes through (x1, y1) and (h, k). If slope of the line is m, show that k – y1 = m (h – x1).


Consider the given population and year graph. Find the slope of the line AB and using it, find what will be the population in the year 2010?


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


What can be said regarding a line if its slope is  zero ?


Without using Pythagoras theorem, show that the points A (0, 4), B (1, 2) and C (3, 3) are the vertices of a right angled triangle.


Prove that the points (−4, −1), (−2, −4), (4, 0) and (2, 3) are the vertices of a rectangle.


Find the equation of a straight line with slope 2 and y-intercept 3 .


Find the equation of a line which is perpendicular to the line joining (4, 2) and (3, 5) and cuts off an intercept of length 3 on y-axis.


Find the equation of the strainght line intersecting y-axis at a distance of 2 units above the origin and making an angle of 30° with the positive direction of the x-axis.


Find the equations of the altitudes of a ∆ ABC whose vertices are A (1, 4), B (−3, 2) and C (−5, −3).


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the line a2x + ay + 1 = 0 is perpendicular to the line x − ay = 1 for all non-zero real values of a.


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


If m1 and m2 are slopes of lines represented by 6x2 - 5xy + y2 = 0, then (m1)3 + (m2)3 = ?


The line passing through (– 2, 0) and (1, 3) makes an angle of ______ with X-axis.


Find the equation to the straight line passing through the point of intersection of the lines 5x – 6y – 1 = 0 and 3x + 2y + 5 = 0 and perpendicular to the line 3x – 5y + 11 = 0.


The two lines ax + by = c and a′x + b′y = c′ are perpendicular if ______.


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y – 11 = 0 are ______.


Find the equation of the line passing through the point (5, 2) and perpendicular to the line joining the points (2, 3) and (3, – 1).


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


Slope of a line which cuts off intercepts of equal lengths on the axes is ______.


The points (3, 4) and (2, – 6) are situated on the ______ of the line 3x – 4y – 8 = 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×