English

The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______. - Mathematics

Advertisements
Advertisements

Question

The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is ______.

Options

  • `(a^2 - b^2)/(ab)`

  • `(b^2 - a^2)/2`

  • `(b^2 - a^2)/(2ab)`

  • None of these

MCQ
Fill in the Blanks

Solution

The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is `(b^2 - a^2)/(2ab)`.

Explanation:

First equation of line having intercepts on the axes 

a, – b is `x/a - y/b` = 1

⇒ bx – ay = ab   ......(i)

Second equation of line having intercepts on the axes

b, – a is `x/b - y/a` = 1

⇒ ax – by = ab   .....(ii)

Slope of equation (i) m1 = `b/a`

Slope of equation (ii) m2 = `a/b`

∴ tan θ = `|(m_1 - m_2)/(1 + m_1m_2)|`

= `(b/a - a/b)/(1 + a/b  b/a)`

= `(b^2 - a^2)/(2ab)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Straight Lines - Exercise [Page 180]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 10 Straight Lines
Exercise | Q 26 | Page 180

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The base of an equilateral triangle with side 2a lies along they y-axis such that the mid point of the base is at the origin. Find vertices of the triangle.


Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points P (0, –4) and B (8, 0).


Without using the Pythagoras theorem, show that the points (4, 4), (3, 5) and (–1, –1) are the vertices of a right angled triangle.


If three point (h, 0), (a, b) and (0, k) lie on a line, show that `q/h + b/k = 1`


Find the value of p so that the three lines 3x + y – 2 = 0, px + 2y – 3 = 0 and 2x – y – 3 = 0 may intersect at one point.


Find the equation of the lines through the point (3, 2) which make an angle of 45° with the line x –2y = 3.


Find the slope of a line passing through the following point:

(3, −5), and (1, 2)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)


State whether the two lines in each of the following is parallel, perpendicular or neither.

Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).


Find the slope of a line (i) which bisects the first quadrant angle (ii) which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.


Using the method of slope, show that the following points are collinear A (4, 8), B (5, 12), C (9, 28).


What can be said regarding a line if its slope is  zero ?


Without using the distance formula, show that points (−2, −1), (4, 0), (3, 3) and (−3, 2) are the vertices of a parallelogram.


Find the angle between X-axis and the line joining the points (3, −1) and (4, −2).


A quadrilateral has vertices (4, 1), (1, 7), (−6, 0) and (−1, −9). Show that the mid-points of the sides of this quadrilateral form a parallelogram.


Find the equations of the bisectors of the angles between the coordinate axes.


Find the equation of the right bisector of the line segment joining the points (3, 4) and (−1, 2).


Find the image of the point (3, 8) with respect to the line x + 3y = 7 assuming the line to be a plane mirror.


Find the angles between the following pair of straight lines:

(m2 − mn) y = (mn + n2) x + n3 and (mn + m2) y = (mn − n2) x + m3.


Find the tangent of the angle between the lines which have intercepts 3, 4 and 1, 8 on the axes respectively.


Show that the tangent of an angle between the lines \[\frac{x}{a} + \frac{y}{b} = 1 \text { and } \frac{x}{a} - \frac{y}{b} = 1\text {  is } \frac{2ab}{a^2 - b^2}\].


Write the coordinates of the image of the point (3, 8) in the line x + 3y − 7 = 0.


The medians AD and BE of a triangle with vertices A (0, b), B (0, 0) and C (a, 0) are perpendicular to each other, if


The coordinates of the foot of the perpendicular from the point (2, 3) on the line x + y − 11 = 0 are


The equation of a line passing through the point (7, - 4) and perpendicular to the line passing through the points (2, 3) and (1 , - 2 ) is ______.


Find the equation of the straight line passing through (1, 2) and perpendicular to the line x + y + 7 = 0.


If the line joining two points A(2, 0) and B(3, 1) is rotated about A in anticlock wise direction through an angle of 15°. Find the equation of the line in new position.


Show that the tangent of an angle between the lines `x/a + y/b` = 1 and `x/a - y/b` = 1 is `(2ab)/(a^2 - b^2)`


A variable line passes through a fixed point P. The algebraic sum of the perpendiculars drawn from the points (2, 0), (0, 2) and (1, 1) on the line is zero. Find the coordinates of the point P.


One vertex of the equilateral triangle with centroid at the origin and one side as x + y – 2 = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×